
Elementary Function Implementation with Optimized Sub Range Polynomial

Evaluation

Martin Langhammer, Bogdan Pasca

Altera European Technology Centre

High Wycombe, UK

Abstract—Efficient elementary function implementations re-
quire primitives optimized for modern FPGAs. Fixed-point
function generators are one such type of primitives. When
built around piecewise polynomial approximations they make
use of memory blocks and embedded multipliers, mapping
well to contemporary FPGAs. Another type of primitive which
can exploit the power series expansions of some elementary
functions is floating-point polynomial evaluation. The high costs
traditionally associated with floating-point arithmetic made this
primitive unattractive for elementary function implementation
on FPGAs. In this work we present a novel and efficient
way of implementing floating-point polynomial evaluators on
a restricted input range. We show on the atan(x) function
in double precision that this very different technique reduces
memory block count by up to 50% while only slightly in-
creasing DSP count compared to the best implementation built
around polynomial approximation fixed-point primitives.

Keywords-elementary function; primitive; power series; poly-
nomial evaluation; Horner; floating-point; FPGA

I. INTRODUCTION

FPGAs have now sufficient capacity for implementing

large computational datapaths using floating-point arith-

metic. Programming FPGAs to perform these computations

requires, among many others, the existence of mathematical

libraries of optimized functions, which perform well on

contemporary FPGAs.

Efficient elementary function implementations must be

done on a function basis. The availability of efficient

primitives for building these functions contributes to their

quality and reduces development time. One such primitive

is fixed-point function approximation based on lookup-tables

and additions. Various implementations exist (see [4] for a

review) but the method scalability is questionable beyond

16 bits. A better primitive which can scale up to ≈ 30 bits

is the High Order Table-Based Method (HOTBM) [5]. The

fixed-point function approximation is built using a piecewise

polynomial approximation. The polynomial is evaluated by

evaluating each monomial using a combination of table-

lookups and low-precision power-and-multiply units and

targets logic-based implementations.

A primitive which better targets the embedded multipliers

and memories of recent FPGAs is the fixed-point function

evaluator available in FloPoCo [3] and presented exten-

sively in [6, Ch.7]. Unlike HOTBM, this primitive uses the

Horner scheme to evaluate the polynomial and performs

an automatic error analysis in order to reduce multiplier

size. The primitive scales to any precision and makes good

use of existing FPGA resources such as memory blocks

and embedded multipliers. However, its efficiency has been

questioned for large precisions in [7] where a combination

of a 27-bit piecewise polynomial approximation and one

Newton-Raphson iteration required fewer resources for a

floating-point divider implementation.

In this paper we present an alternative primitive based on

a novel technique in order to facilitate the implementation

of some elementary functions based on their power series.

The primitive implements the floating-point Horner datapath

of a truncated power series which converges to the first

coefficient as x → 0. The novel technique removes the costly

barrel shifters of the floating-point adder normalization

stages, as well as the normalization and rounding stages

between operators. The allowed input will be in an interval

of the form [0,2−k] where the typical values for k would

be in the range 8− 10. The rest of the range [2−k,1], if

needed for computation is handled using identities. We show

here that the inverse trigonometric functions such as atan(x)
either directly fit this model or can be easily restructured to

fit this model.

Our synthesis results on a recent StratixV device, for

double precision, show that using this primitive, atan(x)
requires 50% fewer memory blocks while only slightly

increasing DSP and logic consumption compared to an

implementation based on a fixed-point piecewise polynomial

approximation primitive.

II. ELEMENTARY FUNCTION EXAMPLE

The IEEE-754 standard on floating-point arithmetic (re-

vised in 2008 [1]) uses a triplet (sign, exponent, fraction) to

represent a floating-point number:

x = (−1)s2e1. f

Various combinations of the exponent and fraction widths

(wE and wF) define the formats of the IEEE-754 standard

(see Table I).

All floating-point elementary functions such as the

trigonometric family (sin(x), tan(x), etc.), inverse trigono-

metric (asin(x), atan(x), etc.), logarithm and exponentials,

Table I
FLOATING-POINT FORMATS DEFINED BY THE IEEE-754 2008

STANDARD

wE ,wF Name IEEE-754 2008

5, 11 half precision (binary16)
8, 23 single precision (binary32)

11, 52 double precision (binary64)
15, 112 quadruple precision (binary128)

etc. all input and output data in one of these formats.

While traditional microprocessors allow high performance

by hardening in silicon basic operators for single and double

precision, custom formats can better exploit the flexibility

of FPGAs. Hence, in what follows although the running

example uses double precision, the presented techniques can

be easily used for any custom precisions.

Let us take as a running example f : R→ [− π

2
,+ π

2
] with

f (x) = atan(x). The function f is an odd function f (−x) =
− f (x), therefore when implementing the function, we can

just focus on the x ≥ 0 case.

Next, there are two computational branches for imple-

menting the function:

atan(x) =

{

atan(x) if x ≤ 1
π

2
− atan(1

x
) otherwise

The high-level architecture of the implementation is de-

picted in Figure 1. The architecture requires one single

computation of atan(z), common to both branches. When

x ≤ 1 the absolute value of the input is forwarded directly

to this unit. For the second branch, the input to the unit is

fetched from the output of the reciprocal unit. Therefore, for

both branches suffices to compute atan(x) for 0 ≤ x ≤ 1.

The Taylor series for atan(x) is:

atan(x) = x− x3/3+ x5/5− x7/7+ ... (1)

and allows to approximate atan(x)≈ x for x < 2−⌈wF/2⌉.

Next, there are two classical and efficient ways for

computing the value of atan(x) for x ∈ [2−⌈wF/2⌉,1]. The

first method is to cast the floating-point input into an

approximately 1 + wF + ⌈wF/2⌉-bit fixed-point value and

use this to drive the input of a piecewise tuned Minimax

polynomial approximation unit [6, Ch.7]. A normalization

stage potentially shifting left the approximation result by

at most ⌈wF/2⌉ bits is then required. This method is

efficient for lower precisions but becomes very inefficient for

larger precisions, due to the high polynomial approximation

degrees and the increasing multiplier widths. For instance, in

double precision with an input fixed-point width of 79-bits,

the required polynomial degree (depending on the number of

subintervals) is either 8 or 9, using in the final multiplication

stage a truncated multiplier of approximately 79× 79 bits.

Additionally, the number of memory blocks for storing the

polynomial coefficients is also very high.

x ≤ 2−⌈wF/2⌉

−

π

2

r

1
x

x ≤ 1

|x|

x

atan(x)

Rounding/Normalization

Figure 1. High-level architecture for the floating-point atan(x) function

An alternative way is to use the following rewrite:

atan(x) = x

(

atan(x)

x

)

The second term of the multiplication is now in the

interval (0.75,1) thus having a known MSB position. There-

fore, this can be implemented using an approximation of

roughly 1+wF bits. Using the same piecewise polynomial

approximation and for a number of intervals equal to 256,

the double-precision implementation would now require a

degree 5 approximation, having an implementation cost sig-

nificantly lower than the previous technique. We still require

an additional multiplication of size 1+wF , but the total cost

still out-weights the previous cost for larger precisions. For

precisions slightly smaller than single precision, a degree

2 piecewise polynomial approximation would suffice for

the first technique (1+17-bit fraction, approximation size of

27-bits), but would require a degree 2 approximation + 1

multiplication for the second technique. Indeed, the size of

the approximation tables and multipliers would be smaller

in the second case, but due to the larger granularity of

memories and embedded multipliers in FPGA devices this

would only be marginally exploitable.

An alternative way for approximation atan(x),0 ≤ x ≤ 1

is to use the power series in Equation (1), in floating-point

arithmetic in order to cope with the dynamic nature of the

result when x → 0. Traditionally this is considered very

costly on FPGAs, where the cost of floating-point operators,

especially adders, is very high. The main contribution of

this paper is a novel technique for evaluating the polynomial

associated to the truncated power series on a restricted input

range of the form [0,2−k] with values of k typically in 8..10.

The rest of the range [2−k,1] is handled using the following

identity, where a = b+ c is the input argument.

atan(a) = atan(b)+ atan

(

c

1+ ab

)

(2)

As shown in the results section, although the reconstruc-

tion phase is costly for this function, the presented technique

allows savings of as much as 50% on the number of memory

blocks while increasing DSP count by less than 10%.

III. PROPOSED TECHNIQUE

Let P(x) = x−x3/3+x5/5 be the polynomial obtained by

truncating the power series in Equation (1). The accuracy

suffices for double precision when x ∈ [0,2−9]. We evaluate

this polynomial in floating-point for x ∈ [0,2−9] and for the

interval [2−9,1] we will use the identity (2). We restructure

the computation P(x) = x(1− x2/3+ x4/5) and denote y =
x2. The right hand term to evaluate now becomes:

Q(y) = 1−
y

3
+

y2

5
.

When evaluating Q(y), as y < 1,y → 0, the −y/3 and

y2/5 monomial terms have increasingly lower contributions

to the final result. Beyond a low value of y specific to each

monomial, the monomial contribution in the final summation

becomes lower than the accuracy of the format, and can

safely be approximated to 0. As y decreases, when all

monomials reach this threshold the result of the evaluation

is 1. In rough exponent values, y2/5 becomes vanishingly

small for ey <−27 whereas for y/3 the value is ey <−54.

The relative alignment of the monomials in the final

summation depends on the the weight of the coefficients and

the negative weight given by yi. The weight of the coefficient

is fixed for a given polynomial, for instance 1/3 has a weight

of −2. The negative weight given by yi shifts the coefficients

right by a predefined amount. This value is dependent on the

exponent of y and is depicted in Figure 2.

For y < 1 the evaluation of the polynomial can be

performed in fixed-point, once the monomials of order

greater than zero are aligned against a0. The alignment of

each monomial only depends on ey and can be pushed in

the alignment of the monomial coefficient. Therefore, the

corresponding aligned coefficient may be obtained from a

table indexed by the exponent of y.

The tabulated shifts for the coefficients when y < 1 have

a particular pattern as presented in Figure III. Coefficient a1

is shifted right in increments of one binary position as the

exponent of y decreases. Coefficient a2, which corresponds

to the monomial y2a2 is shifted right in increments of two

positions as ey decreases. For instance, when ey =−1:

y2a2 = (2ey1. fy)
2a2 = 22ey1. fy

2a2 = 1. fy
2(2−2a2)

a2y2

a0

ey =−2, y ∈ [2−2,2−1)

ey =−4, y ∈ [2−4,2−3)

a1y

a1y

a2y2

a1y

a2y2

a0

a1y

ey =−1, y ∈ [2−1,1)
1

a2y2

a0

fixed coefficient shift

2x1

2x2 ? ?

?2

1a0

ey =−3, y ∈ [2−3,2−2)

? ?

1 ?

1

??

?

? ?

?

1

2x3

3

Figure 2. Typical monomial alignment for Q(y) on a toy wF = 5 format

...2 1

Coeff. Table a1Coeff. Table a2

coefficient selection for ey =−2

Figure 3. Tabulated coefficient shifts. The first line in each table
corresponds to the signed and normalized coefficient. Subsequent lines
correspond to weighted-down values of the coefficients corresponding to
the shift amounts.

In general, the table corresponding to coefficient ai will

contain all instances of the coefficient shifted right in in-

crements of i positions. As previously explained, for each

monomial, as ey becomes smaller, there exists a threshold

value beyond which its contribution becomes smaller than

the precision of a0. This gives us a bound on the number of

entries to be stored for each table. Exponent values lower

than this threshold will address the final line of the table

which contains zero.

IV. OPTIMIZATIONS

We implement this polynomial evaluation as a dynamical

fixed-point solution as presented in Figure 4. The size of

the shifted coefficient tables, and hence the size of the

associated multipliers can be dimensioned to match the

double precision accuracy while reducing resources.

In evaluating Q(y) where x∈ [0,2−9], we need to optimize

the datapath for y ∈ [0,2−18]. Using this information, the

first monomial a1y will be shifted right at least 18 positions

Decoder

Table a2

Decoder

18

40

1839

53

ex

1.Fx

Q(y)

Table a1

a0 = 1

40

36

MSB

x2

N
o

rm
al

iz
at

io
n

E
x

ce
p

ti
o

n
H

an
d

li
n

g
Figure 4. Polynomial evaluation scheme for double precision atan(x), for
x < 1. The size of the operators is proportional to their implementation size.

compared to a0 = 1. Hence, there is no need to compute

the monomial result on more bits than 54−18+g= 36+g

bits, where g is the number of guard bits, typically 2 or 3.

Similarly, a2y2 will be computed on roughly 18= 54−2×18

bits.

Since for the two monomials of Q(y) (a2y2 and a1y) the

maximum number of bits needed is 36+ g, the squaring

operation y = x2 needs to be only accurate to 36+ g bits,

and can be implemented using a truncated squarer. The final

multiplier in x × Q(y), not depicted in Figure 4, can be

implemented using a truncated multiplier.

V. RECONSTRUCTION

The computed value for P(x) will be equal to the final

atan(x) result if either x or 1/x (denoted by z) ∈ [0,2−9]. For

z∈ [2−9,1] the input argument is cast to fixed-point (denoted

by a) and split into an upper 9-bit chunk denoted by b and a

lower 53-bit chunk denoted by c. Next, identity (2) is used

to build the return value. The first term atan(b) is tabulated.

The argument of the second term is computed as follows:

the product ab requires two DSPs by replacing it with xb

(53× 9) and then aligning the result at most 9 bits to the

right before the next summation. The addition produces a

result which is normalized and can input the inverse unit.

The inverse is computed using a degree-2 piecewise poly-

nomial approximation followed by one Newton-Raphson

iteration, as explained in [7], requiring 6 DSPs and 3

memory blocks. The final multiplication is computed using

a truncated multiplier requiring 3 DSPs.

VI. RESULTS

We give in Table II the results obtained for the double pre-

cision arctangent function on a StratixV FPGA. We compare

against the atan(x) implementation in [2] which uses piece-

wise polynomial approximation, truncated multipliers and to

Table II
ATAN SYNTHESIS RESULTS FOR DOUBLE PRECISION ON STRATIXV

Method Lat. & Freq. Resources

[2] 71 cycles @ 427 MHz 22 DSP 17 M20K 3458 ALM
Proposed 78 cycles @ 408 MHz 25 DSP 8 M20K 3773 ALM

our knowledge does the best set of optimizations for StratixV

FPGAs. The proposed implementation has a slightly longer

latency due to the longer argument computation for final

result reconstruction. The number of DSP blocks and ALMs

is slightly larger but we save approximately 50% memory

blocks in this example.

VII. CONCLUSION

We have presented in this work a novel method for

evaluating specific polynomials on restricted input ranges

in floating-point. The presented techniques allow building

a floating-point polynomial evaluation primitive which can

successfully be used to implement floating-point elementary

functions. For the double precision atan(x), despite the costly

reconstruction the presented technique allows saving up to

50% of the memory blocks while increasing DSP and logic

usage by less than 10%. For applications which require

atan(x) on a small, restricted range [0,2−k] in a given

precision wF , once a sufficiently accurate P(x) has been

determined the primitive can be directly used to generate

hardware.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-
2008, pages 1–58, 29 2008.

[2] DSP Builder – Advanced blockset with timing-driven Simulink
synthesis, 2011. http://www.altera.com/products/software/
products/dsp/adsp-builder.html.

[3] F. de Dinechin and B. Pasca. Designing custom arithmetic data
paths with FloPoCo. IEEE Design and Test, 2011.

[4] F. de Dinechin and A. Tisserand. Multipartite table methods.
IEEE Transactions on Computers, 54(3):319–330, 2005.

[5] J. Detrey and F. de Dinechin. Table-based polynomials for
fast hardware function evaluation. In Application-Specific
Systems, Architectures, and Processors (ASAP’05), pages 328–
333, Samos, Greece, July 2005. IEEE Computer Society.

[6] B. Pasca. High-performance floating-point computing on
reconfigurable circuits. PhD thesis, École Normale Supérieure
de Lyon, Lyon, France, Sept. 2011.

[7] B. Pasca. Correctly rounded floating-point division for DSP-
enabled FPGAs. In 22th International Conference on Field
Programmable Logic and Applications (FPL’12), Oslo, Nor-
way, Aug. 2012. IEEE.

