
FLOATING-POINT DSP BLOCK ARCHITECTURE FOR FPGAS

Martin Langhammer, Bogdan Pasca

Altera European Technology Centre, UK

ABSTRACT

This work describes the architecture of a new FPGA DSP

block supporting both fixed and floating point arithmetic.

Each DSP block can be configured to provide one single

precision IEEE-754 floating multiplier and one IEEE-754

floating point adder, or when configured in fixed point mode,

the block is completely backwards compatible with current

FPGA DSP blocks. The DSP block operating frequency is

similar in both modes, in the region of 500MHz, offering

up to 2 GMACs fixed point and 1 GFLOPs performance per

block. In floating point mode, support for multi-block vec-

tor modes are provided, where multiple blocks can be seam-

lessly assembled into any size real or complex dot products.

By efficient reuse of the fixed point arithmetic modules, as

well as the fixed point routing, the floating point features

have only minimal power and area impact. We show how

these blocks are implemented in a modern Arria 10 FPGA

family, offering over 1 TFLOPs using only embedded struc-

tures, and how scaling to multiple TFLOPs densities is pos-

sible for planned devices.

1. INTRODUCTION

FPGAs are increasingly being used as compute platforms,

whether in traditional computing applications, or in more

complex embedded functions. Floating-point (FP) arithmetic

is required for many of these use cases, which often include

algorithms such as matrix decompositions. Mainstream adop-

tion of FPGAs as compute accelerators requires FP capabil-

ities ranging from basic operators to elementary functions.

It was shown that FPGAs can outperform competing plat-

forms when computing elementary functions [1, 2]; how-

ever, operations such as matrix decompositions require sim-

pler standard operators, such as adders and multipliers, but

in great numbers. Implementing these large datapaths re-

quires significant logic resources which impact area, power

and latency.

Embedded floating-point units are therefore required, but

in the context of an FPGA and not an Application Specific

Standard Product (ASSP). To make FPGAs floating-point

usable while maintaining the economies of scale of a stan-

dard FPGA product, such units must have minimal impact

on area, power, and fixed-point functionality. This is one

key factor often overlooked in previous works which em-

bedded FP functionality in the FPGA fabric. Many device

families from both major vendors [3, 4] have several prod-

uct groupings, each with different ratios of embedded func-

tions to soft logic, such as transceivers in the case of wire-

line targeted devices, and DSP blocks in the case of signal

processing targeted devices. The cost of the DSP blocks

for a given device is determined by percentage of core area,

from less than 1% for a transceiver focused device to 5% for

a DSP focused device. Therefore, the addition of floating-

point functionality to DSP blocks is worthy goal; if a mod-

est area penalty is applied to every DSP block, there will be

essentially a negligible impact to non-DSP users.

The problem is in finding an effective DSP architecture

that supports both useful fixed and floating-point implemen-

tations. Ideally, the fixed-point functionality will be back-

wards compatible to current DSP blocks, with the floating

point features introducing no performance, latency, or power

penalty. Conversely, the floating-point features must also of-

fer the same clock rates and power consumption as the fixed

point modes. In many DSP or arithmetic algorithms, one

multiplier output is added to another, which is well sup-

ported by existing DSP block architectures; for example,

cascade chains from one DSP block to another to support

FIR filters in direct form I or systolic modes. These types

of features must also be considered for floating-point DSP

blocks, but the different bus width to function densities will

require new types of inter-function connection structures.

The contributions of this paper are two-fold: (a) embed-

ding high performance FP capabilities into the DSP blocks

by reusing the fixed-point hardware, keeping full fixed-point

backwards compatibility and maintaining fixed-point per-

formance, and (b) cascading DSP block structures in FP

mode that allow for efficient mapping of scalar-product op-

erations. The efficient reuse of existing fixed-point hard-

ware, combined with the low-area and low-latency design

for the FP cores, requires an approximate 10% DSP area

overhead to provide a fully functional single-precision float-

ing-point unit (adder and multiplier), supporting rounding to

nearest (RNE) and with subnormal flushing to zero on inputs

and outputs. This has a maximum of 0.5% silicon penalty

for applications not using this feature, even in the case of a

DSP targeted device with 5% of total die core area used for



DSP blocks. Embedding FP blocks as separate units, which

is suggested by previous works, would lead to significantly

larger area penalties in non-FP applications.

The rest of the paper is organized as follows. Section 2

briefly reviews floating point terminology. Section 3 reviews

prior work on embedded floating-point functions in FPGAs.

Section 4 introduces the new DSP block architecture that

supports both fixed and FP arithmetic, as well as discussing

the multi-block, or vector, mode. Section 5 gives a more de-

tailed description of the micro-architecture of the arithmetic

structures used in the block. Section 6 presents results for

common applications, including FFTs, FIR filters, matrix-

matrix multiplies, and matrix decompositions. It also in-

cludes a qualitative results comparison to previous works.

Finally, conclusions and the references are presented.

2. BACKGROUND

The IEEE-754 standard for floating-point arithmetic (revised

in 2008) [5] uses a triplet to represent a FP value x: s –

sign bit (0 for positive, 1 for negative), e – exponent (an

integer value) and m – the significand. The value of x is

x = (−1)s2em. In order to avoid duplicate representations of

the same value, the standard uses a normalized significand

– usually m ∈ [1,2). This allows writing x = (−1)s2e1. f
where f is a fraction ∈ [0,1). The number of bits used to

represent the exponent (wE) and fraction (wF) define the

formats of the standard. For instance single-precision uses

wE=8 and wF=23.

Representing values that require an exponent smaller than

emin exponent (for that particular format) may be done by

denormalising the significand. The property of denormal-

izing the significand for numbers very close to zero is of-

ten referred to as subnormal support (gradual underflow).

Subnormal support is often not available in the embedded

context since it adds significant resources to the hardware

implementation of basic operators.

The IEEE-754 standard proposes several rounding modes

for choosing the point on the grid to use for a specific real

value: round to nearest (even, away), towards 0 and towards

+∞ or −∞. The round to nearest modes are the most com-

monly used since they introduce the smallest error.

In this work both the floating point multiplier and adder

support IEEE-754 arithmetic, with the following limitations.

The only rounding mode supported is round to nearest tie-

breaks-to-even (RNE). Subnormals are flushed to zero on

both inputs and outputs. All other signalling and exception

modes, such as zero, NaN, and infinity are properly handled

on input, and correctly encoded on the output, although all

NaNs are handled as quiet NaNs. Flags are not currently

supported, as we felt traps were unlikely to be needed in

large, parallel datapath applications such as those for which

this core is optimized.

3. PREVIOUS WORK

Several earlier papers describe adding embedded floating

point features to FPGAs [6, 7, 8, 9]. In [7], Beauchamp

et.al. compare three alternate methods for implementing ef-

ficient floating-point computations in FPGA devices. One of

these methods involves embedding a dedicated double-pre-

cision floating-point DSP block into the fabric, supporting

a floating-point multiply-add operation. The performance

and silicon area are estimated from published microproces-

sor FPU data. They conservatively estimate the FPU to be

equivalent in area to 161 Xilinx Virtex 2 CLBs (1288 4-

LUTs). The area of a single-precision implementation can

be roughly approximated based on the single to double in-

terface (1:2) or gate complexity (1:4) ratio, to 40-80 CLBs

(300-600 4-LUTs) using their methodology. The resource

savings when using the embedded floating-point block was

assessed against traditional logic and multiplier-based im-

plementations on a number of floating point benchmarks

(common DSP and linear algebra algorithms). Using this

methodology, they report that the embedded FPU FPGA

uses 58% fewer logic elements. Unfortunately, no details are

given on the architectures of the benchmarks, but since there

are relatively few FPUs available, we assume that these are

processing element (PE)-based implementations. PE based

implementations suffer from interface and control overhead

required for recirculating data to the compute units. The

performance of vector-based operations, common in linear

algebra algorithms, would therefore be negatively impacted.

In [8] Ho, et.al. evaluate embedding FP cores into an

FPGA architecture using simple function benchmarks, such

as an FFT butterfly, a 4 tap FIR filter, and 3x3 matrix mul-

tiply. They use published data from the IBM Power PC to

estimate the FPU size at 570 4-LUTs (the estimation is based

on a 5-level pipeline stage datapath of the processor; the po-

tentially simpler FPGA FP blocks are likely to require less

area). Reported results show that the small number of em-

bedded FPUs added to the fabric can bring up to 18X area

savings compared to traditional implementations on the sim-

plistic set of benchmark designs. Unfortunately, the analy-

sis does not consider more realistic benchmarks that require

hundreds of operators. The size of the FPU only allows the

integration of a reduced number per device (even scaling to

larger, current devices the FPU count would still be low) so

unrolled structures such as long scalar products would have

to be mapped to the same few units, in a PE fashion. This

leads to throughput degradation due to the overhead of data

recirculation. Moreover, their proposed unit may only issue

one multiplication or one addition per clock cycle; this is

suboptimal since the size of the unit would provide sufficient

routing resources to simultaneously use the two operators.

Ho, et.al. update their work in [10, 11] where both sin-

gle and double precision FPUs are proposed. They propose

a hybrid FPGA architecture embedding coarse-grain blocks



consisting of floating-point operators into the FPGA fabric.

The number of coarse-grain blocks as well as the number

of FP blocks within the unit are parametrizable. For com-

parison with this work, we will focus on the single preci-

sion results only. They propose a Xilinx XC2V3000 (28772

4-LUTs) device with 16 single precision FPUs, with each

FPU containing two floating point multipliers and two float-

ing point adders. Cost is given at 7% die area total, with

each FPU equivalent to 122 LUTs. Scaling to the current

mid-range 20nm devices containing in the region of about

700K 4-LUT equivalents, we would expect a total of 1600

single precision operators. Fixed point scaling follows this

pattern - the 96 18x18 multipliers in the XC2V3000 would

translate to 2400 multipliers in a current device- the Altera

Arria 10 660 [12] has 3356 19x18 multipliers and the Xil-

inx Kintex Ultrascale 756 [13] contains 2592 27x18 multi-

pliers. The improved size of the FPU would allow running

large realistic benchmarks in today’s devices. Several archi-

tectural limitations would impact system performance and

utility: (a) lack of local interconnect between FPUs would

not support cascade modes, (b) inability to simultaneously

utilize the FP cores in the FPU, and (c) the floating point

only nature of the design.

In [9], Chong and Parameswaran improve on Ho’s work

by designing, rather than estimating, the double precision

FPU. Their FPU is configurable as one double precision

floating point multiplier-adder pair, or two single precision

pairs. Their design is only 74 4-LUTs in area, although they

have to scale the aspect ratio to ensure enough routing re-

sources for the interface. As a result, their FPU grows to

288 4-LUTs in area. The authors state that they hope that

their multimode design will justify commercial use of FPGA

FPUs. Although their results are better than Ho’s, their pro-

posal still suffers from the application specific nature of the

FPU (although they also support some integer operations,

standard fixed point DSP elements are still included in the

FPGA), as well as only small number of the FPUs because

of their routing requirements.

In [14] an alternate approach for enhancing floating point

performance on FPGAs is presented. Rather than embed-

ding dedicated FP units in the fabric, the work focuses on

how to use the existing resources more efficiently. The ap-

proach focuses on fusing a cluster of multiple floating point

operators together, by recognizing that: (a) two connected

floating point operations will have a redundant normalize-

denormalize pair, and (b) wider internal datapaths can com-

pensate the accuracy impact of skipping some rounding stages.

Results show that logic can be reduced by approximately

50%; in [15] it is shown that the approach is actually more

accurate than single-precision IEEE-754 in 75% of the cases,

using a Cholesky matrix decomposition example. Although

this soft floating point method is more efficient, it still has

significant latency if many operators are used in a datapath.

There is still a considerable amount of logic used, and sys-

tem speed for large designs is typically 50% lower than the

speed of a DSP block.

The embedded FPU works acknowledge the application

specific nature of their designs; ”potential to waste signifi-

cant silicon for non-floating-point applications” [2], ”Ded-

icated FPUs are wasted resources for designs that do not

make use of them” [10], and ”However, if unutilized, em-

bedded FPUs waste space on the FPGA die” [9]. Conse-

quently, from a commercial perspective FPU units are only

viable if their overhead is significantly small for designs not

using them.

4. ARCHITECTURE

4.1. Why not another FPU?

Many things need to be considered when including embed-

ded floating-point features in an FPGA: (a) Size – routing

density, routing congestion, and device redundancy, (b) Per-

formance – the floating point function must run as fast as the

maximum possible system speed, and in no way affect the

performance of the existing fixed-point functions; (c) Utility

– all fixed point functions must remain backwards compat-

ible, or possibly align with a natural evolution of the DSP

block, and (d) Tool support – the cost to support new syn-

thesis and Place & Route tools, as well as the cost of IP

migration all need to be taken into account. All of these

underscore the need to include the floating-point features as

part of the fixed-point DSP block, rather than another em-

bedded core.

A good starting point is the StratixV DSP block[4]. Firstly,

it already contains the hardware required for a single-precision

mantissa multiplier under the form of a 27x27-bit fixed-point

multiplier Fig. 1(b). Secondly, it has a good routing den-

sity with 108 data inputs which will support up to three 32

bit single precision inputs. With three inputs, the single-

precision multiply-add operation can be supported within

one block. Finally, it contains wide local interconnect paths

that may be reused for cascade operations when configured

in FP mode.

The routing density could be increased to support two

or three double precision inputs, but this would have knock-

on effects on routing congestion. The aspect ratio of the

block could be changed to increase the number of inputs

per block while simultaneously reducing routing density, but

other device features such as row-based redundancy would

not be supported. These considerations strongly suggest that

a single precision multiply-add structure is a good starting

point for an FPGA floating-point architecture. Even when

using the embedded fixed point multipliers, a single preci-

sion floating point multiply and add pair would consume in

the region of 700 LUTs and registers [16, 17].



Chainout adder/
accumulator

x1[17..0]

y1[18..0]
z1[17..0]

x0[17..0]

y0[18..0]
z0[17..0]

Constant
In

p
u

t
R

eg
is

te
r

B
an

k

P
ip

el
in

e
R

eg
is

te
r

SUB

chainout[63..0]

O
u

tp
u

t
R

eg
is

te
r

B
an

k

Adder

Coeff

Coeff

coef[2..0]

coef[2..0]

NEG
ACCU

LDCST

R[73..0]

chainin[63..0]

Concatenation

(a) DSP block in dual 19x18 fixed-point multiplier mode

Chainout adder/
accumulator

Constant

Pre-Adder

Coeffs

In
p

u
t

R
eg

is
te

r
B

an
k

P
ip

el
in

e
R

eg
is

te
r

chainin[63..0]

Coef[2..0]

z0[25..0]

y0[26..0]

NEG
ACC

LDCST

O
u

tp
u

t
R

eg
is

te
r

B
an

k

chainout[63..0]

x0[26..0]

64

(b) DSP block in 27-bit fixed-point multiplier mode

Fig. 1. DSP block in two fixed-point configurations

4.2. Floating-point multiplier

The fixed-point configuration modes for DSP block are shown

in Figure 1. The two 19x18 multipliers can be used indepen-

dently, summed (both in Fig. 1(a)), or combined to create a

27x27 multiplier (Fig. 1(b)), which can be used to imple-

ment the mantissa multiplier for an IEEE-754 floating point

multiplier. The IEEE-754 exponent calculation is simple,

and the exception handling is a straightforward combina-

torial wrapper around the arithmetic datapath. Because of

the additional cost in silicon area and power, we decided

not to support subnormal numbers as they are rarely used in

FPGA arithmetic operators [17]. In fact, subnormal num-

bers are optional in the single-precision implementation of

the OpenCL [18] standard which is used in a much wider

range of device targets (such as GPUs and DSPs). We there-

fore flush to zero on the input and output of our floating

point operators.

The greatest challenge is the implementation of the IEEE-

754 round-to-nearest tie breaks to even (RNE) mode for the

multiplier. Whereas a traditional implementation would re-

quire two carry-propagate-adders (CPA) on the critical path

– one for the multiplier partial products and one for the

rounding – a VLSI implementation of this structure would

yield a large area and delay. In Section 5, we introduce some

of the structures that make an efficient implementation pos-

sible such that overall, the inclusion of the FP multiplier has

no impact on design performance, and only a 3% impact in

DSP block area, including exponent and exception handling.

To complete the design of the floating point DSP block,

a FP adder is also needed. Section 5 highlights some of the

key implementation techniques allowing for a reduced im-

plementation size while allowing for a one cycle execution

at DSP nominal frequency.

The addition of both the multiplier and the adder has

to be done with sufficient connectivity flexibility such that

(i) scalar operations are available, (ii) multiply-add opera-

tions can be completed within the DSP block, and (iii) DSP

3
2

3
2

3
2

3
2

Fig. 2. DSP block in floating-point mode - simplified

blocks can be cascaded to easily and efficiently map opera-

tions such as scalar products onto them.

4.3. Proposed DSP Block

Fig. 2 shows a logical block diagram of the connectivity

(many of the registers used for performance or delay bal-

ancing have been omitted for clarity) supporting common

arithmetic structures for both intra and inter block use. The

latency for the DSP block in floating point mode is 2 (op-

tionally 3 for performance) clocks for the FP multiplier and

one additional clock when the adder follows the multiplier

directly. An adder accessed independently of the multiplier

will have a latency of 3 clocks. All or some pipeline stages

can be optionally bypassed, but at the cost of a significant

performance reduction.

Fig. 3 shows an alternate view of the DSP block, high-

lighting the balancing registers needed for the block to sup-

port all of the multi-row floating point modes at speed. All

registers in the block are selectively by-passable, allowing

any combination of multipliers and adders to be combined

within a single block, or across two blocks, even though the

maximum depth of the multiplier (three cycles) is different

than the adder (combinatorial, with only an optional input

and output pipeline). The adder can also be configured as a



Output

Register
Bank

Register
Input

Bank

acc

x0

y0

z0

chainout[31:0]

chainin[31:0]

r3
2

3
2

3
2

3
2

Fig. 3. DSP block in FP mode; balancing registers shown

floating point accumulator, enabled by the multiplexer im-

mediately preceding the right hand side input.

The circuit design of the FP adder is critical for success.

The fixed point DSP Block is highly optimized to fit into a

row height (LAB/M20K height) in order to support redun-

dancy. In a mid-range device there are almost 2000 DSP

blocks, so the impact of the FP adder may be significant in

terms of area, device architecture, and power consumption.

The FP adder select inputs from a number of sources, in-

cluding inside the DSP block, from outside the DSP block

through general purpose routing, and from the adjacent DSP

blocks though the chainin/chainout connection.

4.4. Dedicated vector structures

Vector structures are particularly useful for many unrolled

DSP algorithms, such as FIR filters and matrix manipula-

tions. New algorithms for common matrix decompositions

such as Cholesky and QR have been introduced [15]. These

algorithms work by reducing or eliminating data dependen-

cies within rows and columns such that entire rows can be

processed in parallel. The decomposition process is still an

iterative process (though at a higher granularity) and low la-

tency vector kernels are essential for enhanced performance.

The multi-row DSP structure proposed in this work allows

for a straightforward efficient logarithmic latency to kernel

length ratio mapping.

Fig. 4 illustrates two path configurations supported by

the DSP block, which we will refer to as vector modes one

and two, respectively. In vector mode one, the result of the

floating point multiplication is directly fed to one input of

the floating point adder, and the other input to the adder

comes from the immediately adjacent block. In vector mode

two, the multiplier is fed directly to the chainout connection

(typically to the chainin connection of a DSP block config-

ured as vector mode one); the two inputs to the adder come

from outside the block, the left input through the input reg-

ister bank, and the right input from the chainin connection.

The modes shown in Fig. 4 can be used to create a re-

cursive tree structure of any size by using general purpose

routing (but without soft logic). A logical block diagram

(omitting many of the balancing register for illustrative sim-

plicity) is shown in Fig. 6.

The basic building block is the addition of two products

Register

Bank

Input Output

Register
Bank3

2
3

2
3

2

acc

x0

y0

z0

chainin[31:0]

chainout[31:0]

r

(a) Vector One

Input
Register

Bank

Output

Register
Bank3

2
3

2
3

2

acc

z0

r

chainout[31:0]

chainin[31:0]

x0

y0

(b) Vector Two

Fig. 4. DSP block in floating-point vector modes

– in this figure AB + CD (in the first two DSP blocks from

the left) and EF + GH (in the next two DSP blocks). The

AB+CD result is routed (via general purpose routing) into

the third input of the second block from the left, and multi-

plexed into the left input of the floating point adder in that

block. The EF+GH result is routed (again, via general pur-

pose routing) to the third input of the third block from the

left, and routed via the chainout/chainin connection to the

second block from the left, and into the right input of the

adder, producing AB+CD+EF+GH at the output of the DSP

block. This process can be repeated to any degree to create

any length of dot product. As there will be N FP adders and

N FP multipliers in any collection of N DSP blocks, and only

N-1 adders are required for a tree, there will be no function

or connection shortage. While a floating adder inside a DSP

block, i.e. following a multiply, has an additional latency of

one clock cycle, an adder used for the recursive tree addi-

tion after the first level will add three clock cycles. Again

counting from left block to right block, the first block is in

vector mode one, the next block is in vector mode two, the

next block in vector mode one, and the last two continuing

in this alternating pattern. In general, this mode one/mode

two pattern can be used to build any size reduction tree, al-

though the connection length between two nodes in the later

stages of the tree will tend to become very long.

For very large vectors, some of these general purpose

routing connections may become the critical path, especially

for a heavily utilized design. By inspection, the general pur-

pose routing connections can be pipelined to any degree, as

long as all connections at the same level of recursion are

pipelined identically. Pipelining of the general purpose con-

nections is also required if the length of the vector is not a

power of two. The most efficient way to implement such a



...

l=2
d=4

d=10

l=8
l=16
d=13

l=32

d=16
d=6

d=13

d=16

d=19[58:1]

[32:1][48:33][56:49][58:57]

Fig. 5. Structure of a 58 Element Vector

vector would be to decompose the structure into increasing

powers of two, balancing the latency between the first two

sub-structures and adding them, and then balancing the de-

lay of the addition output with the subsequent sub-structure

before addition, and so on. For example, a vector length

of 58 would be decomposed in the following substructure

sizes: 2, 8, 16, and 32, with latencies of 4, 10, 13, and 16,

respectively, and a total delay of 19 clocks. Fig. 5 shows this

structure.

Supporting a an efficient mapping of this recursive com-

puting structure is key for many of the application types,

such as matrix decompositions.

5. ARITHMETIC MICRO-ARCHITECTURE

5.1. FP Multiplier

The greatest challenge is the implementation of the IEEE-

754 round-to-nearest-even (RNE) mode, as the pedantic im-

plementation consists of one CPA on the output of the multi-

plier, a 1 bit normalization circuit, and a final CPA for round-

ing. This is prohibitively expensive as the CPA is a signifi-

cant portion of the multiplier in terms of both area and prop-

agation delay, and a second adder would significantly affect

both the fixed and floating point datapaths. The solution

cannot be fully explained in space available in this paper.

In summary, all possible rounded and normalized values for

the output mantissa are calculated in the portion of the multi-

plier carry prefix structure corresponding to mantissa output

position. These pre-calculated values are also used by the

fixed point multiplier datapath; the carry prefix structures

are distributed across the various fixed point decomposition

points of the 74 bit CPA, and some of the larger fixed point

additions are generated using carry select adders, choosing

between some of the possible rounded floating point man-

tissa values for a certain range of the output. A detailed

description of the FP multiplier mapping can be found in

[19].

The only remaining multiplexer that may affect the fixed

point performance is the final 2:1 multiplexer, selecting be-

tween fixed-point and the floating-point value post-exception

handling. This will be a short path, as the exception han-

dling conditions are largely calculated before the final out-

put. Overall, the inclusion of the FP multiplier has no impact

on design performance, and only a 3% impact in DSP block

area, including exponent and exception handling.

5.2. FP Adder

We evaluated multiple FP adder architectures, finally choos-

ing a dual path design. Like the FP multiplier, the RNE was

the critical path, which we implemented by calculating all

rounded possibilities of the mantissa before the final selec-

tion. The dual path FP adder is well known [20], preceding

even the original IEEE-754 specification [21]. Many en-

hancements have been proposed since [22, 23], so we will

not describe the architecture in detail beyond our RNE im-

plementation.

The FP adder is logically and physically separate from

the FP multiplier (the multiplier block also includes fixed

point accumulators), so fused-multiply-add (FMA) is not

supported, only multiply-add. We only needed to obtain

a sufficient area and performance result; as the multiplier

pipeline was much more complex in both gate numbers and

functionality (supporting both floating-point, as well as many

fixed-point modes), we decided to try a completely synthe-

sizable approach to the adder, to allow a very malleable de-

sign during place and route. In common with many dual path

architectures, the near path only implements subtraction; the

far path also supports the near path addition. Consequently,

the far path can have three ranges of values: 4 > x ≥ 2,

2> x ≥ 1, and 1> x≥ 0.5. The rounding decision points for

the three possible results can be calculated in parallel using

three behaviourally described additions, with the actual re-

sult being selected based on the upper bits of the first adder

(x ≥ 2). The FP adder area is approximately 10% of the final

DSP block core.

5.3. Integration and Verification

The base case DSP block and proposed additions were im-

plemented in Verilog and synthesized with Design Compiler

to a TSMC 28nm library. The functions were functionally

verified using VCS to ensure no functionality was lost dur-

ing the additions. Final area numbers are post-place-and-

route, which was performed using Synopsys ICC and the

design was DRC-clean. PrimeTime was used to verify that

the block closes timing at 500MHz across standard process

corners. The aspect ratio of the Block was determined by

the Altera Arria 10 LAB height, as the DSP block was pitch

matched to it, so that the row based redundancy could be

applied to all features of the device. The DSP block is 2.5

times the width of the LAB.

We performed an extensive verification process, with one

set of test vectors based on the methodology described in

several different sources [24, 25] to verify a black-box view

of the block. We also performed a white-box test, using



...

A B C D E F G H I JAB+CD EF+GH AB+CD+EF+GH IJ+KL+MN+OP

AB+CD

32 32 32

32

32 32 32

32

32 32 32

32

32 32 32

32

IJ+KLAB+CD+EF+GH+IJ+KL+MN+OPEF+GHAB+CD+EF+GH

32 32 32

32

Fig. 6. DSP block in Recursive Vector Mode

a large set of internally generated vectors, which were de-

signed to exercise areas of the architecture that we thought

might be more prone to errors. For the multiplier, this was

the overflow and underflow boundaries, as well as around

the 1-bit normalization boundary. For the adder, this was

around the cancellation boundary (where the subtraction of

two numbers would result in a value close to, but not, zero),

the near path/far path boundary, and the boundary where one

operand would not affect the other (i.e. the one operand was

much smaller than the other one). We have also success-

fully tested our implementation for conformance with the

OpenCL standard, in both simulation, and hardware [26].

6. RESULTS

6.1. Application benchmarks

Methodology

We use a number of benchmark circuits to show the advan-

tages of this new DSP block: a FIR filter, a FFT, a scalar

product, a matrix-matrix multiply and a Cholesky decompo-

sition. Each uses a different ratio of logic, memory and DSP

blocks, a different DSP block to DSP connection pattern,

and a different data flow pattern. All benchmarks use single-

precision FP arithmetic, round to nearest (RNE) mode, with

full support for infinities and NaNs but without subnormal

support. Where possible, we compare the same design with

and without FP DSP blocks enabled. Some of our example

designs cannot be supported on any current FPGA without

hard FP due to insufficient logic resources. Our soft FP im-

plementations use the fused FP datapath synthesis supported

by DSP Builder Advanced, and will give a more efficient

soft logic only implementation than previous works.

For the FIR filter we present results for both a 1518 taps

in order to highlight the top performance of the Arria 10

device, as well as a 128 taps FIR, which we use to show the

resource improvements over a Stratix V device.

For the FFT we use two architectures. First, a 32K point

FFT (32-way parallel) is performed in 1K cycles. The FFT

uses radix 32, with each fully parallel 32-point FFT imple-

mented using the split radix method. This architecture uses

in excess of 1300 DSPs in FP configuration, and only fits in

its current form on FP enabled Arria 10 devices. We report

Flops performance using the conventional FFT flops metric

which presumes that a size N FFT costs 5N log2(N) FP op-

erations. Using this metric we obtain roughly (5× 32K ×

15)/1K (FP operations/cycles). The second FFT architec-

ture is a 64K point, 4-way parallel implementation consist-

ing of 4-serial pipelines of depth 6 (each implemented as 3

radix 22 stages) feeding a 4-way parallel pipeline of depth

10 (implemented as 5 radix-4 stages) with a ROM imple-

mentation of the top-level twiddle factors. This architecture

is used to highlight the advantages of using the embedded

FP units as opposed to a soft floating point implementation

(which is implemented on a Stratix V C2 device). The ar-

chitectures have been generated using Altera DSP Builder

Advanced Blockset 14.1 [27].

The scalar product family of tests include a 16-element

dot product, and matrix-matrix multiply (MMM) of a 12802

matrix. We compare these architectures both with and with-

out embedded FP support. The MMM uses a blocking de-

composition of 1282, with 8 separate scalar products of size

128. We also report an embedded FP only MMM chip-

filling Arria 10 design, processing a 16002 matrix, with a

blocking decomposition of 1602, implemented using 8 scalar

products of size 160. Both MMM benchmarks have been

implemented using Altera OpenCL SDK 14.1 [28] and are

fully functional architectures including all required commu-

nication interfaces.

Finally, we benchmark a Cholesky matrix decomposi-

tion of size 2542. The architecture used is similar to the pre-

viously presented works in [15, 29] and was implemented in

DSP Builder Advanced (and is also part of the example de-

signs). This benchmark compares the resource consumption

of the Arria 10 and Stratix V implementations.

Discussion

The benchmarks results are grouped in Table 1. The left

column presents the benchmark, then subsequent columns

present the resources and performance for designs without



Table 1. Performance comparison for embedded floating-point feature DSP block vs. traditional implementations
Algorithm Perf. w/o FPDSP (Stratix V except MMM (1280) – Arria 10) Perf. w FPDSP (Arria 10)

FIR 1518 no fit 470MHz (>1.4TFlops)

FIR 128 60881ALMs, 128 DSPs, 353 MHz 1676 ALMs, 131 DSPs, 365MHz

FFT 32K no fit 78244 ALMs, 1364 DSPs, 356 M20K, 290MHz (≈700GFlops)

FFT 64K 92923 ALMs, 96 DSPs, 508M20K, 330MHz 13993 ALMs, 256 DSPs, 508 M20K, 360MHz

Vector (16) 7781 ALMs, 16 DSPs, 450MHz, 54 cycles 263 ALMs, 16 DSPs, 385MHz, 14 cycles

MMM (1600) no fit 141442 ALMs, 1280 DSPs 1967 M20K, 285 MHz (730GFlops)

MMM (1280) 315061 ALMs, 1034 DSPs, 1732 M20K, 249MHz 61293 ALMs, 1034 DSPs, 1732 M20K, 280 MHz

Cholesky (254) 109914 ALMs, 260 DSPs, 333M20K, 275 MHz 12716 ALMs, 270 DSPs, 332 M20K, 277MHz

(a) 32K FFT on A10 (b) 1600 MM on A10 (c) 128-Tap SP FP FIR SV (d) 128-Tap SP FP FIR A10

Fig. 7. ChipPlanner views of mapped designs on Arria10 devices and corresponding StratixV devices where available

and with embedded FP support.

Firstly, the 1518 tap FIR filter shows the maximum at-

tainable performance when only FP DSPs are used. The

number of taps equals the number of DSPs of a large Ar-

ria 10 device (10AX115U5F45I3SP). The device has a lay-

out similar to Fig. 7(a) and has 7 DSP columns of vari-

ous length. The filter is therefore split into 7 correspond-

ing sections with data delay chains running vertically. The

jumps between columns span across the full height of the

device and therefore require several stages of pipeline (we

used 5 stages) to achieve the DSP block limited frequency

of 470MHz, which translates to over 1.4TFlops.

The 128 tap FP FIR filter is presented in order to contrast

the logic utilization reduction between a Stratix V device

and the Arria 10 device. The logic reduction is more than

97% as virtually all of the logic in the filter is mapped to the

DSP blocks. The number of DSP blocks increases from 128

to 131 in the hard FP case, as DSP Builder Advanced uses

a default chunk size of 32 when splitting long dot-products.

As a result, 3 additional adders are used to sum the 4 chunks

together. Figures 7(c) and 7(d) visually present the device

utilization ratio between the two architectures.

The 32K point FFT (32-way parallel) is used as an ex-

ample of the capabilities of the new hard FP enabled devices.

The number of DSPs used is close to the maximum count.

Logic resources are used for constant (twiddle) multipliers

and synchronization paths. The performance is close to 700

GFlops which is particularly interesting since FFTs have an

imbalanced use of adders to multipliers. The logic utiliza-

tion in the large device is less than 20%. Fig. 7(a) shows

the relatively low logic resource utilization when FP DSP

blocks are used. The smaller FFT demonstrates the imple-

mentation possibilities between hard and soft FP designs.

Because of the non 1:1 multiplier:adder ratio in an FFT, the

85% logic savings are partially offset by a 2.66x increase in

DSP blocks.

The next benchmark is a small 16-element real scalar.

In this relatively trivial example, the logic savings of the FP

DSP block approach 96% while also reducing latency by

approximately 75%. A more complex MMM example pro-

vides a maximum performance of 730GFlops on multiply-

ing square matrices of size 1600. The 8 vector products of

size 160 used in the architecture are mapped to the 7 avail-

able DSP columns. Fig. 7(b) shows the device utilization for

this design. A smaller example running on matrices of size

12802 and using 8 vector products of size 128 highlights the

advantage of using the embedded FP DSP blocks. The non

FP DSP design uses 315K ALMs, mapped to an Arria 10

device with no FP DSPs active for comparison. The logic

savings in this case are close to 80%.

Finally, a DSP Builder Advanced Cholesky matrix de-

composition example (part of the example degins) shows a

push-button 88% improvement in logic resources over the

equivalent Stratix V design.

6.2. Performance comparison with related works

The comparison of our results to the previous works is not

straightforward. Some newer techniques have been intro-

duced recently for FP datapath construction [14], which re-

duce the logic and latency of a dot product in the order of

50%, as well as new methods for matrix decompositions



[15]. The use of these methods would change the area and

performance improvement analysis in the three previous pa-

pers. We also decided to normalize our results to the each of

the three previous works individually. We believe that the

area numbers previously reported do not completely cor-

rectly reflect the implementation in actual FPGA architec-

tures, although we will not make an adjustment for this in

our analysis for simplicity.

Beauchamp,et.al. [7] estimate the FPU area and perfor-

mance from other published work. As the referenced work

uses a more complex 5 stage pipeline, and is based on a

commercial device, the FPGA scaling numbers are proba-

bly pessimistic; the integration overhead would be included

in the reported area, and the 5 stage, higher performance,

pipeline would likely be larger than the shorter FPGA em-

bedded block.

Five benchmarks are used: matrix multiply, matrix-vector

multiply, for product, FFT, and LU decomposition. No in-

formation on data sizes or algorithms, such as radix for the

FFT, are given. There is no information on the architectures

used – which will have a significant influence on the map-

ping to FPGA – for example, if dot product structures are

used, or if a multiple PEs architecture is used. They state

that division is mapped to logic, which may mean bit re-

currence implementation, which will have a negative impact

on performance with the associated long latency and routing

stress.

Our methodology and results have been widely reported

[15, 29] , including independent verification. We will com-

pare dot product, FFT, and substitute a Cholesky decomposi-

tion for the LU decomposition. The Cholesky and LU algo-

rithms are similar in complexity, and both use division. We

will not attempt to normalize the comparison results – there

is not enough implementation information given in [7].

Our logic reduction is typically 80%, in comparison to

the 54% reported in [7]. This may be due to several reasons:

a PE architecture will not scale as well as vector mapping,

the FIR filter maps directly to our DSP blocks, and the recur-

sive vector mode reduces overall routing congestion because

of dedicated DSP to DSP connections. Newer algorithms for

Cholesky decomposition allow long latency dot products to

be used for matrix decompositions such as LU, Cholesky,

and QR, because data dependencies are no longer the bottle-

neck. Beauchamp reports a 17% FPU device area – there are

no details on how this was calculated, so we cannot normal-

ize this to a current device – but in any case prohibitive for

a mainstream FPGA. His estimates appear to require more

area than the equivalent blocks implemented in [9] and [11].

Ho, et. al. [11] use a number of benchmarks. The three

that are described in enough detail to implement are trivial -

even in comparison to the contemporary FPGA used - matrix

multiply, FIR, and FFT butterfly.

The matrix multiply is a 3 element vector, consisting of

3 multipliers and 2 adders. The FIR filter is a 4 tap FIR fil-

ter, assuming it consists of 4 multipliers and a binary tree of

3 adders, or perhaps it is of the alternate form, also requir-

ing 4 multipliers, and 3 adders, with each adder summing

the previous tap with the current tap. The FFT is a complex

multiplier, followed by a complex adder. Ho gives an ex-

pected area for all of these in their Table IV(a), and reports

an average of a 96% area reduction for these three functions.

This is not a totally fair comparison, as their reported base-

line numbers are for FP functions completely implemented

in soft logic, with no use of the available embedded 18x18

multipliers.

These simple benchmarks can be directly mapped to our

DSP blocks, using no soft logic other than registers needed

to balance the datapath delays. We can implement the FIR

filter directly using both forms: the direct form two structure

with the following binary tree reduction is supported with

the recursive vector mode of Fig. 4, and the direct form 1

structure is supported with the systolic mode connections, in

a similar fashion to the existing fixed point FIR filter modes.

Our implementation is more efficient from a whole chip per-

spective, as the FP functions are implemented in the existing

DSP blocks, and DSP block to DSP block direct connections

are available – and optimized for – common DSP structures,

without using soft logic or routing.

Normalizing the reported FPU area into a current 700K

LUT equivalent device would require 14% die area for 1600

DSP blocks, or approximately 4 times the cost of our design,

but without the integer support. The difference is likely due

to two reasons: the use of externally developed FP operators,

which may not have been optimal for the area/performance

requirements of this design, and the routing interface design,

which would force a potentially difficult FPU aspect ratio.

Chong and Parameshawan in [9] built a configurable FPU

structure that can be dynamically configured to support inte-

ger, single precision, and double precision arithmetic. They

also built a double precision only FPU to understand the cost

of providing multimode operation, which they reported as a

31% area and 21% delay increase. We believe that these

numbers reasonably mirror that of the cost of configurabil-

ity for commercial devices, although the incremental cost of

adding single precision FP to our integer DSP blocks was in

the range of 15% logic, without any performance reduction.

Their FPU uses more complex double precision arithmetic,

but the number of integer modes in a commercial device

[12, 13] is very large, and not reflected in the modes sup-

ported in Chong. We disagree with their choice of a single

path FP adder based on their stated reasons of design com-

plexity and area, as the dual path architecture will typically

synthesize to a much better area-performance result, which

may impact the size of their FPU. Chong and Parameshawan

use the same simple benchmarks as Ho, et. al. Their analysis

shows a 68% reduction, rather than the 96% area reduction



of Ho, because they include the embedded 18x18 multipliers

in their calculations. Also, they use more soft logic around

the FIR and matrix multiply benchmarks, presumably for

data and coefficient storage. Again, we are able to map all of

the arithmetic circuits directly to our DSP block, using only

registers to balance delays, such as shown in our Fig. 5, or to

store data and coefficients. Interestingly, normalizing their

reported area results into a current 700K LUT device will re-

quire 17% for the equivalent of 1600 DSP blocks, although

in this case, double precision is also supported.

In all three previous works, the system cost of the FPU

blocks, normalized to current devices with DSP blocks sup-

porting FP is similar in area; the interface density required

seemingly the single most important influence.

Area is examined in all three previous works, but not

routing optimization. In fact, all three designs are modified

to allow full connectivity to the arithmetic structures.

7. CONCLUSION

We presented a new DSP block that can be configured to

provide both and fixed and FP functions. Compared to ear-

lier works, the proposed DSP block is truly integrated into

the FPGA fabric, with high performance and efficient rout-

ing usage. It allows for a very high density of over 1600 sin-

gle precision FP DSP blocks on a mid-range 20nm device,

supporting up to 1.6 TFLOPs using only the newly embed-

ded features. The proposed floating-point solution builds

upon the existing fixed-point DSP block, and has lower rout-

ing requirements that the fixed-point modes. No degrada-

tion of fixed point performance or density occurs, and any

mix of fixed and floating-point operations can be config-

ured. In fact, this FP enhanced FPGA behaves just like a

traditional FPGA architecture with fixed-point only capabil-

ity, with essentially no cost or power impacts to non-floating

point users.

8. ACKNOWLEDGEMENTS

We kindly thank Simon Finn and Tomasz Czajkowski for their contribu-

tions to application benchmarking.

9. REFERENCES

[1] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudoran, “When

FPGAs are better at floating-point than microprocessors,” ENS Lyon,

Tech. Rep. ensl-00174627, 2007, http://prunel.ccsd.cnrs.fr/ensl-

00174627.

[2] F. de Dinechin and B. Pasca, “Floating-point exponential functions

for DSP-enabled FPGAs,” in FPT. IEEE, 2010.

[3] 7 Series FPGAs Overview - Product Specification, 2014. [On-

line]. Available: http://www.xilinx.com/support/documentation/

data sheets/ds180 7Series Overview.pdf

[4] StratixV Device Handbook, 2011, http://www.altera.com/literature/

hb/stratix-v/stratix5 handbook.pdf.

[5] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,

pp. 1–58, 29 2008.

[6] E. Roesler and B. E. Nelson, “Novel optimizations for hardware

floating-point units in a modern FPGA architecture,” in FPL’02, Lon-

don, UK, UK, 2002, pp. 637–646.

[7] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Archi-

tectural modifications to enhance the floating-point performance of

FPGAs,” VLSI, vol. 16, no. 2, pp. 177–187, Feb 2008.

[8] C. Ho, P.-W. Leong, W. Luk, S. J. E. Wilton, and S. Lopez-Buedo,

“Virtual embedded blocks: A methodology for evaluating embedded

elements in FPGAs,” in FCCM, April 2006, pp. 35–44.

[9] Y. J. Chong and S. Parameswaran, “Configurable multimode embed-

ded floating-point units for FPGAs,” VLSI, vol. 19, no. 11, pp. 2033–

2044, Nov 2011.

[10] C. H. Ho, C. W. Yu, P.-W. Leong, W. Luk, and S. J. E. Wilton,

“Domain-specific hybrid FPGA: Architecture and floating point ap-

plications,” in FPL, Aug 2007, pp. 196–201.

[11] C. H. Ho, C. W. Yu, P. Leong, W. Luk, and S. J. E. Wilton, “Floating-

point FPGA: Architecture and modeling,” VLSI, vol. 17, no. 12, pp.

1709–1718, Dec 2009.

[12] Arria10 Device Overview, 2014, http://www.altera.com/literature/hb/

arria-10/a10 overview.pdf.

[13] UltraScale Architecture and Product Overview - Advance Product

Specification, 2014, http://www.xilinx.com/support/documentation/

data sheets/ds890-ultrascale-overview.pdf.

[14] M. Langhammer, “Floating point datapath synthesis for FPGAs,” in

FPL, sept. 2008, pp. 355 –360.

[15] S. Demirsoy and M. Langhammer, “Cholesky decomposition using

fused datapath synthesis,” in FPGA, 2009, pp. 241–244.

[16] K. Underwood, “FPGAs vs. CPUs: trends in peak floating-point per-

formance,” in FPGA. ACM, 2004, pp. 171–180.

[17] LogiCORE IP CORDIC v7.0, 2013, http://www.xilinx.com/

support/documentation/ip documentation/floating point/v7 0/

pg060-floating-point.pdf.

[18] Khronos OpenCL Working Group, The OpenCL Specification,

version 1.2.19, November 2012. [Online]. Available: https:

//www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[19] M. Langhammer and B. Pasca, “Design and Implementation of an

Embedded FPGA Floating Point DSP Block,” Altera,” Research

Report, Dec. 2014. [Online]. Available: https://hal.archives-ouvertes.

fr/hal-01089172

[20] P. M. Farmwald, “On the design of high performance digital arith-

metic units,” Ph.D. dissertation, Stanford, CA, USA, 1981.

[21] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE

Standard, Std 754-1985, New York, 1985.

[22] P.-M. Seidel and G. Even, “On the design of fast IEEE floating-point

adders,” in ARITH, 2001, pp. 184–194.

[23] ——, “Delay-optimized implementation of IEEE floating-point addi-

tion,” IEEE Trans. Comput., vol. 53, no. 2, pp. 97–113, Feb. 2004.

[24] J. T. Coonen, “Contributions to a proposed standard for binary

floating-point arithmetic (computer arithmetic),” Ph.D. dissertation,

1984, aAI8512788.

[25] Z.-S. A. Liu, “Berkeley elementary function test suite,” Department

of EE and CS, UC at Berkeley, Tech. Rep., Dec. 1988.

[26] T. S. Czajkowski, “Silicon verification using high-level design tools,”

in ACM/SIGDA International Symposium on Field Programmable

Gate Arrays. ACM, 2015.

[27] “DSP Builder Advanced Blockset,” http://www.altera.com/

technology/dsp/advanced-blockset/dsp-advanced-blockset.html.

[28] “Altera OpenCL SDK,” http://www.altera.co.uk/products/software/

opencl/opencl-index.html.

[29] “An Independent Analysis of Altera’s FPGA Floating-point DSP

Design Flow,” 2011. [Online]. Available: http://www.bdti.com/

MyBDTI/pubs/2012 Altera FloatingPoint Design.pdf


