
Flexible fixed-point function generation for FPGAs
Matei Iştoan

Université de Lyon, INRIA,
INSA-Lyon, CITI, F-69621 Villeurbanne, France

Bogdan Pasca
Intel PSG

France

Abstract—Efficient fixed-point function implementation is crit-
ical in many FPGA application domains including convolutional
neural networks, computer vision, and communication systems.
In this work we focus on functions of the form xp, with
p ∈ {−1,−1/2,1/2} as part of a function generator targeting
FPGAs. The generator implements architectures based on new
but also existing algorithms. In this work we present three distinct
methods implemented in this generator that outperform state-of-
the-art implementations for certain configurations. Traditionally,
fixed-point function implementation requires a normalization
stage, compute and denormalization (reconstruction) of the
result. The first proposed method implements the function
holistically, thus saving the logic and latency required during the
normalize and reconstruct stages. The second proposed method is
based on a novel second order Taylor implementation. The third
method is based on the cubic convergence of Halley’s method,
which is novel in this context. The proposed methods are com-
pared and contrasted against state-of-the art implementations in
the context of FPGA targets.

I. INTRODUCTION

With increased capacities, compute-oriented embedded fea-
tures such as DSP blocks and large on-chip memory blocks,
FPGAs provide a great platform for accelerating applica-
tions. This family of devices are very efficient at imple-
menting compute datapaths when using customized fixed-
point arithmetic. Efficient implementations of fixed-point
functions are critical for many application domains includ-
ing convolutional networks [1], computer vision [2], MIMO
communication-systems with matrix-decomposition [3], [4],
scientific-computing at CERN [5], image-reconstruction in
bioinformatics [6] and others. Since application requirements
(data format, precision, target, frequency) are often very di-
verse, a high-level generator (Figure 1) is the best way of pro-
viding state-of-the art fixed-point function implementations.

In this paper we focus on the implementation of a family of
fixed-point functions of the form xp with p∈{−1,−1/2,1/2}.
We present three distinct methods implemented in the function
generator, that outperform state-of-the-art implementations for
certain configurations.

The first proposed method improves the latency and logic re-
sources. It works in general for functions of the form 2p, p< 0;
in this work the reciprocal and reciprocal square root fit this
profile. The savings of this method are thanks to the holistic
implementation of the function, given the user specification,
as opposed to a classical range-reduction/compute/reconstruct
implementation. An example of such a specification is: un-
signed reciprocal on 16 bits, with 8 integer and 8 fractional
bits. This method is described in Section IV.

Architecture
Selection

Inputs

Function
In/Out Precision

FPGA
Frequency
Tradeoffs

1 10 20 32
Tables

15 25
Bitwidth

Bipartite+Halley

Taylor

Bipartite

Full-Range Taylor-based

Tabulate-and-Multiply 1st order
Tabulate-and-Multiply 2nd order

Bipartite+Newton

Tables+Halley

FPGA DB

Architecture DB

Optimization

Selector
ArchitectureMapping

DSPBA

Backend

Outputs

List of
Architectures

Design-space Exploration

Architecture
Resources

Fig. 1. High-level view of the fixed-point function generator and estimated
input bit-width to implementation method mapping

The second proposed method is an extension to second
order of the tabulate-and-multiply method from [7]. The
method outperforms state-of-the-art minimax-approximation-
based techniques by having the lowest memory requirement
and lowest logic requirements while using a similar numbers
of multipliers. The resource savings are thanks to the particular
Taylor coefficients that allow for computations using bit-
manipulations. The method is described in Section V-B.

The third proposed method is based on a novel use of
Halley’s cubic convergence algorithm. The method uses a par-
ticular form of the recurrence that allows computing functions
such as the reciprocal and reciprocal-square-root efficiently in
a hardware context. For wider bitwidths Halley’s method is
used together with the bipartite-table method, which returns
the initial approximation. In this configuration the novel im-
plementation clearly outperforms state-of-the art implementa-
tions. This method is described in Section VI-B.

The presented three methods, alongside other numerous
classical implementation algorithms, presented on the bottom
of Figure 1, are part of our fixed-point function generator.
The generator is part of the DSP Builder Advanced (DSPBA)
[8] backend, and allows for fully parametrized descriptions in
terms of precision, FPGA target, and target frequency.

II. FPGA FEATURES

FPGA devices are composed of millions of small tables (4-
6 inputs), which can be programmed to perform any logic
function (of 4-6 inputs). These small tables are connected
using a flexible, programmable interconnect network, which
allows interconnecting any two nodes in the FPGA. In Intel
FPGA devices, these table-based resources are encapsulated
in Adaptive Logic Modules (ALMs). Each ALM can be
configured as 2 independent 4-input lookup tables (LUT), one
6-input LUT, and many combinations of functions that share
inputs. Logic resources are usually reported in terms of ALMs.

Contemporary FPGA devices also contain thousands of
small flexible multipliers (packaged in DSP blocks) and mem-
ory blocks. In this paper we focus on the low-cost CycloneV
[9] devices for which the DSP blocks can be configured
in various modes: 2 18x19, 27x27 etc. Results either report
multiplier usage in terms of 18x18 equivalents, or by stating
the number of DSP blocks. Dedicated memory blocks in
CycloneV devices have a capacity of 10Kb each (M10K).
The relevant configurations for this works are: 2048x5bits,
1024x10bits, 512x20bits, 256x40bits.

III. BACKGROUND AND RELATED WORK

Methods initially designed for floating-point (FP) imple-
mentations require the input to the fixed-point kernel to be
normalized to [1,2). The steps for implementing a fixed-point
function using these methods include a pre-scaling stage (get
to [1,2)), followed by a computation on the restricted interval,
and the reconstruction of the original function (post-scaling,
function-specific). Arbitrary format fixed-point functions can
be implemented in this way. Alternatively, if the function is
in fixed-point we can use algorithms that would otherwise be
insufficiently accurate for the fixed-point kernel of a floating-
point core. The use of these algorithms depends on the
function, the in/out data formats and the user’s input ranges.

The classical range reduction for fixed-point kernels consists
in performing the substitution x = 2exnorm where x is the
input, e may be considered its exponent and xnorm ∈ [1,2)
its normalized mantissa. With a mantissa in [1,2) classical
algorithms can be employed. For the fixed-point functions
targeted by this work, the reconstruction phase involves:

yinverse = 2−e 1
xnorm

yrecipSqrt =

{
2−e/2 1√

xnorm
if e even

2(1−e)/21/
√

2 1√
xnorm

if e odd

ysqrt =

{
2e/2√xnorm if e even
2(e−1)/2

√
2
√

xnorm if e odd

A number of strategies can be employed for implementing
the fixed-point kernels with normalized inputs.

Table-based methods fit well contemporary FPGAs thanks
to the various granularity look-up tables and block memories.
Direct tabulation is straightforward and suitable for bitwidths
up to 10-12 bits. Results can be stored correctly rounded

and underflow/overflow logic is integrated. Above the 10-12-
bit range, direct tabulation increases memory requirements
exponentially. Therefore, several methods try to overcome this
limitation: ATA method [10], iATA [11], the bipartite method
[12], SBTM [13], STAM [14] and the generalized multipartite
method [15], [16], [17].

With the increase of precision, table-based methods become
impractical. Polynomial approximation-based methods scale
better. The polynomial itself can be obtained by either using
truncated Taylor series which approximates the function, or
by using a generic polynomial approximation – for example
a minimax polynomial. Some works building on the first
approach are [7], [18] for smaller bitwidths (discussed in
Section V-A) and [19] for larger bitwidths.

Iterative methods can also be used for higher precisions. The
Newton-Raphson method (Section VI-A) doubles the accuracy
of the initial approximation at each iteration. Halley’s method
triples the precision at each iteration. The generalized order
n version (output precision after 1 iteration is n times higher
than the input precision) is known as Householder method
[20]. Iterative methods are covered in Section VI-B.

IV. HOLISTIC FULL-RANGE IMPLEMENTATION

One contribution of this article are architectures targeting
bit-widths of up to 16-bits, that don’t require range-reduction
and reconstruction stages. The computational core of these
architectures are based on 1st degree Taylor polynomials. The
key observation is that the approximation polynomials are used
on wider-than-typical input ranges. The input ranges where
the approximation is insufficiently accurate are handled using
tabulation-based techniques.

Figure 2 highlights three instances of the reciprocal function
for the same input/output bit-width (4 bits), but for 3 different
fixed-point formats: width (w) w=4, fraction (f) f=3, w=4
f=2 and w=4, f=1. The 3 formats correspond to different in-
put/output ranges: [0,1.875], [0,3.75] and [0,7.5] respectively.
The behavior of the function is also different: in Fig.2(a) a
significant input range leads to saturation, while in Fig.2(c)
many inputs come close to underflow.

Using a classical technique (range reduction and reconstruc-
tion), the computing kernel operates on a function with a
normalized input x ∈ [1,2). In case of the reciprocal the nor-
malized function is depicted in green in Fig.2(a). As previously
stated, many families of techniques exist for computing the
function in green. A piecewise-polynomial-based architecture
divides the input interval into a number of subintervals (2k),
and approximates the function on each subinterval using a
polynomial (degree d). The parametrization (k,d) produces
the required accuracy on the normalized input range, but can
be sufficiently accurate on a wider range (example for the
reciprocal is highlighted in yellow in Fig.2(a)). There will
be ranges where the piecewise polynomial approximation is
not sufficiently accurate (where the first derivative is large
for instance). These regions will be handled by tabulation
(example highlighted in pink in Fig.2(a)). Some functions will

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

1.125

1.25

1.375

1.5

1.625

1.75

1.875

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875

1/x
1/x w=4 f=3

Saturation

Classical
Range-Reduction

Sufficiently Accurate

In
a
cc

u
ra

te
 -

 T
a
b
u
la

te

(a) w=4 f=3

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

 3.5

 3.75

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75

1/x

1/x w=4 f=2

(b) w=4 f=2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

1/x
1/x w=4 f=1

Close to undeflow

(c) w=4 f=1

Fig. 2. Reciprocal function for 3 input/output formats

have regions where the output saturates to some value (exam-
ple highlighted in red Fig.2(a)), or are close to underflowing
(example highlighted in orange in Fig.2(c)).

The proposed architectures use 1st degree piecewise-
polynomial approximations using the minimax algorithm. Ad-
ditionally, during generation intervals which violate the accu-
racy requirement are identified and hardware is built for these
to be handled separately, either by simple or by composed
tabulation (base + offset), in a similar way to [17]. There are
a high number of variables which influence these decisions
and hence these are implemented inside a function generator.

Typically, hardware will be built for detecting the saturation
range, and for handling the inaccurate region (by tabulation).
Since FPGA memory blocks are monolithic, it can prove
more efficiently to sometime tabulate the entire saturate and
inaccurate range.

The table output bit-width is equal to the output width of
the architecture. If the number of table elements is large, the
number of memory blocks required for implementing this table
can increase significantly. Since this table stores the function
value for consecutive inputs, the variation between consecutive
elements in the table can be quite small. Consequently, in some
cases a more efficient architecture can be obtained by sampling
the input table and storing the offset values from the sample
values in the offset table, similarly to what is done in [17].
Using a simple addition we exactly reconstruct the content of
the initial table, and can decrease memory impact significantly.
Determining if the base+offset architecture is more efficient
than simple tabulation depends on the input/output format and
target FPGA memory block architecture. For one such format
a design-exploration stage assesses the memory impact of sev-
eral decompositions: base+offset. The best architecture overall
is selected by first selecting the best candidate among the
base+offset architecture and the simple table-only architecture.

For functions such as the reciprocal, the output of the
architecture may underflow for a large number of inputs,
depending on the input/output format. One example is the
input/output format with 16-bits of precision (unsigned) and
4 bits of fraction. This is a case where a separate underflow
architecture is more efficient to be used.

The underflow architecture will use tabulation for values
that do not overflow or underflow. It has two implementation

x

1
x Table

Cmp. > 0

idx0

1̃
x

(a)

x

1
x Table

Cmp. >Cmp. > 0 1

idx0 idx1

1̃
x

(b)

Fig. 3. Two architectures used for underflow handling

options: 1/ tabulation is used for all values that do not
underflow (return 0) and 2/ tabulation is used for values that
are different to 0, or to 1 ulp (this can easily be extended). A
design-space exploration phase determines the input indices
for which values larger will return 1ulp (idx1ul p), and for
which it would return 0 (idx0ul p). Based on these 2 values the
possible architectures are explored and the one requiring the
fewest memory blocks is selected. If the architectures return
the same number of memory blocks, then 1/ is selected since
the logic implementation is less expensive. Figure 3 depicts
the two architectures used for underflow-heavy formats. The
results section presents the results of all these optimizations
across an important number of input/output formats.

V. TABULATE-AND-MULTIPLY

A. First Order

One of the shortcomings of the table-only methods is
the exponential growth of the memory resources with the
increase of the input precision. The method introduced in [7]
is based on the Taylor series expansion; it reduces the memory
requirements by using a linear polynomial approximation of
xP (for P =±2k, k integer).

The input x is split into two parts, x = x1 + x2, with 1 ≤
x1 < 2 and 0 ≤ x2 < 2−m. The function xP is approximated
around the point x = x1 + 2−m−1, with the first two terms of
the Taylor series. Factoring (x1 +2−m−1)P−1 yields:

xP ≈ (x1 +2−m−1)P−1(x1 +2−m−1 +P(x2−2−m−1)) (1)

Keeping the notations of [7], we denote C = (x1 +2−m−1)P−1

and x′ = x1+2−m−1+Px2−P2−m−1. Term C, can be obtained

m

x11
m

w+1w+g

w+g

x̃P

x′C′Table

Round

w1+m

w-m-1

x2

(a) First Order Tabulate-and-Multiply
Method Architecture

w

x2
m

Fx′

w-m-1m

w+g w+1 w-m

1+m

x11

w+g

x̃P

2(m+2)

D Table G Table

Round

(b) Second Order Tabulate-and-Multiply
Method Architecture (for the reciprocal
function)

20 2−m 2−2m−2

F = x2−2−m−1
2−m−1

x′ = x1+2−m− x2

22(−w+1)

signed

signed

truncation

w1+m

1 x1 x2

G

... Fx′

G−Fx′
D

... D(G−Fx′)

2−w+1 2−w+1+g

(c) Second Order Method: Operand Alignments (for the recipro-
cal function)

Fig. 4. First and Second-Order Table and Multiply Architectures

from a table addressed by x1; x′ can be obtained by using
simple bit manipulations on x2 and x1. Thus, equation (1) is
re-written so that it requires one multiplication:

xP ≈ Cx′ (2)

The error introduced by truncating the Taylor series is:

εm ≈ P(P−1)(x1 +2−m−1)P−22−1(x2−2−m−1)2 (3)

Which means that εm ≈ 2−2m−3+log |P(P−1)| . The method error
εm can be slightly improved by replacing C in Eq. (2) by
C′ =C+P(P−1)xP−3

1 2−2m−4 as shown in [7].
The architecture is depicted in Fig. 4(a). For our functions,

x′ consists mainly of inverting the bits of x2 and concatenating
them in a given order. The C′ table requires 2m(w+1) bits (w
the input bitwidth and m≈ w/2). The multiplication is of size
(w+ 1)×w, and a truncated multiplier can be used so that
the final result is obtained on w+1 bits. The x′ term requires
≈ w−m LUTs, and a w-bit addition for the final rounding.

B. Second Order

The use of only two terms of the Taylor series expansion in
the first order tabulate-and-multiply method limits the accuracy
which it can achieve. Take into consideration the bit-width
range for which the first order tabulate-and-multiply method
can be used, at the top of Figure 1. At the top of the range, for
the larger precisions, the size of the C′ table becomes a limiting
factor. The second order tabulate-and-multiply method is an
extension of the method in Section V-A, and tries to overcome
this shortcoming.

The method makes use of the first three terms of the Taylor
series. As in the case of the first order method, the input x is
split into two parts x1 (the top m MSBs) and x2 (the remaining
LSBs), with 1 ≤ x1 < 2 and 0 ≤ x2 < 2−m. Therefore, an
approximation around the point x = x1 +2−m−1 results in:

xP u(x1 +2−m−1)P +(x2−2−m−1)(x1 +2−m−1)P−1P

+
1
2
(x2−2−m−1)2(x1 +2−m−1)P−2P(P−1) (4)

If (x1 +2−m−1)P−2 is factored out:

xP u(x1 +2−m−1)P−2[(x1 +2−m−1)2

+(x2−2−m−1)(x1 +2−m−1)P+
P(P−1)

2
(x2−2−m−1)2]

(5)

The terms of Equation 5 can be regrouped more conveniently:

xP u(x1 +2−m−1)P−2[(x1 +2−m−1)2

+P(x2−2−m−1)(x1 +2−m−1 +
P−1

2
(x2−2−m−1))]

(6)

We use the following notations:

D = (x1 +2−m−1)P−2 x′ = x1 +2−m−1 +
P−1

2
(x2−2−m−1)

G = (x1 +2−m−1)2 F = x2−2−m−1 (7)

Therefore, Equation 6 can be evaluated as:

xP u D[G+PFx′] (8)

In terms of the implementation, the terms D and G can be
read simultaneously from a table, indexed by x1. The term
F can be obtained through bit manipulations, by flipping the
MSB of x2 and storing the new sign of F , for later use. The
term x′ can also be obtained through bit manipulations. The
actual operations depend on the value of P, but mainly consist
of concatenations or negations, and possibly additions. A
rectangular multiplication is additionally required, between F
and x′. Both of the multiplications can be truncated to a smaller
intermediary precision. An illustration of the architecture with
data alignments for 1/x (P =−1) is presented in Fig.4(b) and
Fig.4(c) respectively.

The method error εmethod inherent to the second order
tabulate and multiply method is of the order of magnitude
of the terms that were left out of the Taylor series expansion,
and can be expressed as:

εmethod ≈ P(P−1)(P−2)(x1 +2−m−1)P−3 1
6
(x2−2−m−1)3

(9)

Therefore, the method error can be bounded as εmethod ≈
2−3m−5+log |P(P−1)(P−2)| (with P taking the values −1, 1

2 and
− 1

2 for the recip., sqrt and recip. sqrt functions, respectively).
Compared to the first order method, which produces a result
that is correct within approximately 2m bits, the second order
method has an accuracy of approximately 3m bits.

The multiplications Fx′ and the one between D and the
term between square brackets can be truncated so as to save
resources. A larger intermediary precision (g extra guard bits)
is used in the datapath in order to absorb the rounding errors.

The error budget εtotal < 2−w (where w is the output pre-
cision) is classically divided as εtotal = ε f inalRound + εmethod +
εround . The final rounding incurs an error bounded by 2−w−1,
which means that the method and the rounding errors must
satisfy εmethod + εround < 2−w−1. Finding a bound on εmethod
determines the value of m, while finding a bound on εround
gives the number of guard bits g.

Equation 8 can be rewritten so as to reflect the sources
for the rounding errors: xP u D̃[G−PF̃x′], where the tilded
operations are approximations of the true mathematical func-
tions. The multiplication by the factor P does not introduce an
error, as the constant is a power of two for the three functions
considered. The term G is also without error, as the square can
be stored in the table correctly rounded. Introducing notations
for the error terms, the equation can be further expressed as

xP u (D+ εtab)[G−P(Fx′+ εmult)]+ εmult

Expanding this expression and grouping the terms gives:

xP u D[G−PFx′]−DPεmult + εtab[G−P(Fx′+ εmult)]+ εmult

from which the rounding error can be identified as:

εround =−DPεmult + εtab[G−P(Fx′+ εmult)]+ εmult

Taking into account the fact that the for the three functions
studied the corresponding values of P are −1, 1

2 and − 1
2 , and

using the upper bounds for the terms D, G, F and x′, a bound
can be found for εround :

εround ≤ εround = εmult(1−P)+ εtab(1−Pεmult)

Considering that the same internal precision is required for the
tabulations and for the truncated multiplications (εtab = εmult =
2−w−g), then the number of extra guard bits must satisfy:

g > 2+ log(2−P−P2−w−g)

This remains, however, a pessimistic bound on g.
The methods presented in this section are practical for

precisions of up to about 24 bits.

VI. LARGE PRECISION METHODS

A. Newton-Raphson Method

Probably the best known iterative method is the Newton-
Raphson scheme. This is a root-finding scheme with quadratic
convergence. The recurrence relation is xn+1 = xn− f (xn)

f ′(xn)
with the error entailed by this iteration approximated to:
εn+1 ≈ ε2

n f ′′(xn)/2 f ′(xn).

For the sake of brevity, the following discussions will be
limited to the case of the reciprocal. In order to compute
the reciprocal of a number a, a function f is needed so
that f (1

a) = 0. A convenient choice for the function f is
f (x) = 1

x −a. Replacing f into the recurrence relation results
in the following scheme:

xn+1 = xn(2−axn) (10)

Given an initial approximation, the iteration given by Eq. (10)
only requires additions and multiplications.

The total error is again divided as εtotal = ε f inalRnd +εrnd +
εm, and εtotal < 2−w. Eq. (10) thus becomes:

xn+1 = x̃n(2− ãx̃n) (11)

This assumes that we have an initial approximation correctly
rounded to m = dw

2 e bits (which implies an error less than
2−m−1). Writing explicitly the errors in Eq. (11), it becomes:

xn+1 = (xn +2−m−1)(2−a(xn +2−m−1)+ εmul1)+ εmul2

which can be written as xn+1 = xn(2−axn)+εrnd where εrnd
represents the rounding errors:

εrnd = 2−m−1(2−axn)−2−m−1a(xn +2−m−1)

+ εmul1(xn +2−m−1)+ εmul2 (12)

The sum of the first two terms of Eq. (12) is of the order of
2−2m−2. If εmul1 and εmul2 are of the form 2−w−g (where g
are guard bits), Eq. (12) shows that at least 3 guard bits are
needed.

A good option for the initial approximation is the use of a
bipartite table since for target precisions of up to 32 bits dw

2 e
is suitable for use with the bipartite method. It is also possible
to increase the number of iterations, therefore increasing the
number of multiplications, but decreasing the resources needed
to obtain the initial approximation.

B. Generalized Iterative Methods

There exist methods with faster than quadratic convergence.
The second order Newton-Raphson method is also known as
Halley’s method. The recurrence equation is given by:

xn+1 = xn−
2 f (xn) f ′(xn)

2(f ′(xn))2− f (xn) f ′′(xn)
(13)

The error entailed by the method can be expressed by a
recurrence that shows the cubic convergence of the method:

εn+1 ≈ ε
3
n f ′′′(xn)/(6 f ′(xn))

The Newton-Raphson and the Halley method are the first
and the second in a class of iterative methods known as the
Householder methods [20]. The n+1-st term in the class has
the form:

xn+1 = xn +(n+1)
(

1
f (xn)

)(n)
/
(

1
f (xn)

)(n+1)
(14)

where the (n) denotes the n-th order derivative. One House-
holder iteration improves accuracy n+1 times.

Round

w1+m

m
1

1

w+g

x̃P

h

x2

Bootstrap
Bipartite 1+m

(a) Computational datapath

20

w1+m

1

22

...

1

...

2−w−m

2−m2−m+2

h2 +h
...

h = 1−ax0

a

cancellation

x0 Bipartite approximation (no final round)

21−w−g21−w2−2m+4

2−w−g−m

x0 + x0(h2 +h)
x0(h2 +h)

ax0

h2
22(1−w−g)

(b) Operand fixed-point alignments

Fig. 5. Halley’s method using bipartite bootstrapping for the reciprocal function

The Halley method (or the Householder method, more
generally) replaces the tangent to the function plot (in the case
of Newton-Raphson) by a curve (or a higher order curve, in
the case of Householder). This curve has a higher number of
derivatives in common with the function plot at the point of
the approximation. This should, in principle, fit the plot better,
giving a better approximation. However, as remarked in [21],
in the case of the reciprocal this expansion is not particularly
useful. Plugging-in the same function as in the case of the
Newton-Raphson iteration in the Halley iteration requires the
computation of the inverse that we are trying to approximate
in the first place.

On the other hand, as remarked in [22] and even further back
presented in [23] taking a different approach to obtaining the
iteration in the first place seems to be more effective.

The starting point for the alternative approach is again the
Taylor series around the point xn. A root of f (x) satisfies
f (x) = 0; the value x− xn is expressed as a power series of
f (xn):

(x− xn) = a f (xn)+b(f (xn))
2 + c(f (xn))

3 + . . . (15)

By replacing eq. (15) in the Taylor series expansion around
xn and using f (x) = 0 results in:

0 = f (xn)+ f ′(xn)(a f (xn)+b(f (xn))
2 + c(f (xn))

3 . . .)

+ f ′′(xn)/2!(a f (xn)+b(f (xn))
2 + c(f (xn))

3 . . .)2 + . . . (16)

If eq. (16) is seen as an equation with f (xn) as a variable, the
coefficients of the same powers of f (xn) on the two sides of
the equation can be identified. Thus, the a, b, c, . . . coefficients
can be found:

a =− 1
f ′(xn)

b =− f ′′(xn)

2(f ′(xn))3 c =− (f ′′(xn))
2

2(f ′(xn))5 (17)

Replacing the values of Eq. (17) in Eq. (15) results in (showing
only the first three terms):

xn+1 = xn−
f (xn)

f ′(xn)
− (f (xn))

2 f ′′(xn)

2(f ′(xn))3 − . . . (18)

Eq. (18) can be used as an alternative to Halley’s method.

In order to obtain the cubic iteration for the reciprocal
function, f (x) in eq. (18) is chosen as f (x) = 1

x −a:

xn+1 = xn(1+hn(1+hn)) hn = 1−axn (19)

In order to obtain the iteration for the reciprocal sqrt, f (x)
in eq. (18) is chosen as f (x) = 1

x2 −a. This results in:

xn+1 =
1
8

xn(8+hn(4+3hn)) hn = 1−ax2
n (20)

Both the iteration for the reciprocal and the one for re-
ciprocal sqrt have cubic convergence. We show next the
error analysis for the datapath implementing Eq. (19). The
evaluation, on the other hand, is done as in Eq. (21) (where
hn keeps the meaning of eq. (19)):

xn+1 = xn + xn(hn +h2
n) (21)

This form of the iteration takes advantage of the fact that hn <
2−m (the proof and reasoning are similar to the range reduction
of [19]). This means that fewer bits are needed for the squaring
of hn and for the multiplication xn(hn +h2

n), due to the terms
being shifted to the right by 2m and m bits respectively.

The total error is divided in three parts, εtotal = ε f inalRnd +
εrnd + εm < 2−w. The final result is rounded, so ε f inalRnd <
2−w−1. The rounding errors, εrnd are due to the initial ap-
proximation and to truncating the multiplications in Eq. (21).
Making these errors explicit, Eq. (21) becomes (where m is
the precision of the xn approximation):

xn+1 = (xn +2−m−1)+(xn +2−m−1)(hn−a2−m−1− εmul

+(hn−a2−m−1− εmul)
2)

or xn+1 = xn + xn(hn +h2
n)+ εrnd where

εrnd = 2−m−1(1+hn +h2
n)+

(xn +2−m−1)(a2−m−1 + εmul)(a2−m−1 + εmul−1−2hn)

which can be re-written as:

εrnd = 2−m−1(1+hn +h2
n)+

+(xn +2−m−1)[((−a)2−m−1 +a22−2m−2−a2−mhn)+

+ εmul(1− εmul−2hn +a2−m)] (22)

TABLE I
HOLISTIC IMPLEMENTATION SYNTHESIS RESULTS FOR 1/x AND 1/

√
x

COMPARED TO CLASSICAL RANGE REDUCE/RECONSTRUCTION
TECHNIQUE. TARGET DEVICE CYCLONE V, SPEEDGRADE -6.

f (w, f) ALM DSPs M10K Latency Frequency

1
x

16,15 49 1 3 7 310MHz
16,14 82 1 8 9 310MHz
16,13 85 1 10 9 310MHz
16,12 79 1 11 9 310MHz
16,11 69 1 8 7 310MHz
16,10 72 1 8 7 310MHz
16, 9 61 1 6 7 310MHz
16,8 48 1 5 6 295MHz
16,7 47 1 5 6 283MHz
16,6 44 1 4 6 287MHz
16,5 50 1 2 6 307MHz
16,4 27 0 1 2 315MHz

Generic Range Reduction
16 bit 148 0 5 11 310MHz

1√
x

16,15 49 1 3 7 310MHz
16,14 73 1 9 9 310MHz
16,13 79 1 11 9 310MHz
16,12 70 1 8 7 310MHz
16,11 69 1 8 7 310MHz
16,10 48 1 6 6 294MHz
16,9 46 1 5 6 285MHz
16,8 45 1 4 6 289MHz
16,7 44 1 4 6 302MHz
16,6 52 1 2 6 294MHz
16,5 49 1 2 6 310MHz
16,4 39 1 2 6 310MHz

Generic Range Reduction
16 bit 242 0 5 16 311MHz

where εmul denotes the rounding error due to a multiplication
or of a squaring.

The terms of Equation (22) that do not contain εmul will
result in a term that is of the order of 2−3m−3. Thus, if εmul is
of the form 2−w−g, where g is the number of guard bits, we
should ensure that g > 3 for a faithfully rounded result.

VII. RESULTS

Table I shows the performance of the holistic implementa-
tion method introduced in Section IV for the reciprocal and
reciprocal square root functions. We used various fixed-point
formats to highlight the implementation results.

There are several architectural variations of this solution.
A specialized underflow architecture will trigger when a
significant output range underflows with respect to the output
format. There are 2 variants of this architecture: for instance
(16,4) triggers Fig. 3(a), while (16,5) triggers Fig. 3(b).
Format (16,15) triggers the architecture with approximation
sufficiently accurate on the compute range (except overflow).
One architecture uses extra tables for inputs where the ap-
proximation is not sufficiently accurate. The architecture of
the extra table is selected in order to minimize memory block
utilization. This table may also capture the inputs that cause
the output to overflow, if doing so does not increase the
memory block requirements. For the table itself there are
two sub-architectures possible: regular or base+offset. For
instance, format (16,12) will save 1 memory block by using
the base+offset architecture, and will have the table indexed by
x. Format (16,14) will also save 1 memory block but the table
will be indexed by an offset x; the range close to 0 will be

handled separately as handling it in the table would increase
the memory requirements.

The final row for each function (marked Generic Range
Reduction) shows results for the bipartite method with the
normalization, compute and reconstruct stages. This imple-
mentation is agnostic to the input/output format. Comparing
the proposed holistic implementation to this generic one we
observe that in general we always improve latency. Our
implementations use one multiplier (half DSP) but generally
consume fewer ALM resources. For the function 1/

√
x our

implementation shows the best ALM savings compared to
the generic implementation. This is due to the complexity
of the reconstruction stage, that in addition to the classical
barrel shifter, also requires a constant multiplier by

√
2 (see

Section III). In terms of memory blocks, the architecture
performs significantly better for inputs ranging from (16,10) to
(16,14) but is on par, or consumes more memories otherwise.

Table II shows the performance for our proposed meth-
ods for kernels with x ∈ [1,2). For 1/x, our proposed 2nd

order Tabulate and Multiply method is compared against a
state-of-the art FloPoCo minimax-based piecewise-polynomial
approximation core [24]. For 24-bit precision, our method
saves one memory block, consumes fewer ALMs and has
a shorter latency while consuming one 18x18-bit multiplier
more (there are two such multipliers per DSP block). We
have also compared against [25] by extrapolating the minimax-
based VLSI implementation to the FPGA target. Our proposed
savings and tradeoffs are very similar to the first comparison.
The results are very similar for the two other functions: 1/

√
x

and
√

x. Here our proposed implementation offers a tradeoff
by consuming fewer memory blocks, at the expense of 1 half-
DSP multiplier. We have also compared resources against a 1st

order implementation, and have shown that our proposed 2nd

order implementation scales better for precisions larger than
20 bits in terms of memory requirements.

We have compared architectures based on the newly intro-
duced Halley’s method against FloPoCo’s fixed-point imple-
mentation [24]. We have used an improved implementation
that bootstraps the Halley iteration using a Bipartite approxi-
mation, as opposed to a table. This change has allowed saving
2 memory blocks at the expense of 17 ALMs. For 1/x our
proposed implementation outperforms the FloPoCo core in all
metrics. The savings are more than 40% ALMs, 3 memory
blocks (75%) and a reduction of latency from 13 to 11. For the
1/
√

x the slightly more complicated recurrence (Eq. 20) makes
the implementation a tradeoff, offering a saving in memory
blocks at the expense of multipliers.

VIII. CONCLUSION

In this work we have proposed three methods for imple-
menting fixed-point functions from the family xp with p ∈
{−1,−1/2,1/2}. We have shown with our holistic implemen-
tation methodology that both logic resources and latency can
be saved when accounting for the user-specific input/output
formats when generating the implementation. We have ex-
tended to second order a method by Takagi [7] that makes

TABLE II
PERFORMANCE FOR SOME OF DESCRIBED ARCHITECTURES ON CYCLONEV C6 FOR X ∈ [1,2). RESULTS OBTAINED USING QUARTUS 16.1.

FREQUENCIES MARKED WITH * ARE RESTRICTED FMAX. MULTS COUNTED AS 18X18 EQUIVALENTS (2/DSP).

f I/O Implementation Resource utilization and Performance Multipliers Tables(w,f) ALMs MULTs M10Ks Lat. Frequency

1
x

19,18 Tab. Mult. 1st 29 2 1 4 250MHz* U20u×U21u 512×21

21,20 Tab. Mult. 1st 30 2 3 4 250MHz* 22u×23u 1024×23
Tab. Mult. 2nd 48 4 1 5 250MHz* 22u×S14s,23u×24u 128×38

23,22
Tab. Mult. 1st 32 2 5 4 250MHz* 24u×25u 2048×25
Tab. Mult. 2nd 135 4 0 5 250MHz* 24u×16s, 25u×26s 128×40
Tab. Mult. 2nd 51 4 1 5 250MHz* 24u×16s, 25u×26s 128×40

24,23

Tab. Mult. 1st 33 2 13 4 250MHz* 25u×26u 4096×26
Tab. Mult. 2nd 60 4 1 5 250MHz* 25u×16s, 26u×27s 256× (40+3)
FloPoCo d=2 75 3 2 6 249MHz 16s×13s, 16s×21s 256×61
[25] 3 2 5 15u×15uT , 15uT ×7u, 15u×15u 256×49

32,31

Bipartite+Newton 106 4 5 9 246MHz 32u×18u, 18u×35u 2048×18, 1024×6
Table+Halley 92 6 3 10 250MHz* 32u×12u, 26s×26s, 12u×27s 2048×12
Bipartite+Halley 109 6 1 11 250MHz* 32u×13u, 26s×26s, 13u×27s 256×13, 64×4
FloPoCo d=3 191 6 4 13 196MHz 19s×15s, 19s×22s, 24s×31s 256×100

1√
x

24,23 Tab. Mult. 2nd 87 4 1 9 250MHz* 27u×26u, 16u×25u 256× (40+3)
FloPoCo d=2 86 3 2 7 250MHz* 16×12, 16×20, 256×59

32,31 Bipartite+Halley 169 9 1 19 247MHz 13u×13u, 32u×25u, 24s×24s, 24s×13u 256×40 (Dual port)
FloPoCo d=3 163 7 4 16 240MHz 18×14, 18×21, 24×31s 256×98

√
x 24,23 Tab. Mult. 2nd 74 4 1 8 250MHz* 27u×26u, 16u×25u 256× (40+3)

FloPoCo d=2 77 3 2 7 250MHz* 16×10, 16×21, 256×58

extensive use of logic and bit-fiddling techniques for reducing
resources. The proposed technique has a smaller table footprint
compared to state-of-the-art architectures based on minimax
polynomials. The proposed higher order methods based on the
cubic convergence of Halley’s method, combined with efficient
Bipartite bootstrapping have proved to clearly outperform
state-of-the-art minimax-based implementations for 1/x, and
to provide a tradeoff for the 1/

√
x. The proposed architectures

often offer tradeoffs against other possible implementations.
The best place for these types of methods is behind function
generators, where the best possible candidates are selected,
based on user-specification.

REFERENCES

[1] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An FPGA-based
processor for convolutional networks,” in 2009 International Conference
on Field Programmable Logic and Applications, Aug 2009, pp. 32–37.

[2] J. Schlessman, C.-Y. Chen, W. Wolf, B. Ozer, K. Fujino, and K. Itoh,
“Hardware/software co-design of an FPGA-based embedded tracking
system,” in 2006 Conference on Computer Vision and Pattern Recogni-
tion Workshop (CVPRW’06), June 2006, pp. 123–123.

[3] D. Chen and M. Sima, “Fixed-point CORDIC-based QR decomposition
by Givens rotations on FPGA,” in 2011 International Conference on
Reconfigurable Computing and FPGAs, Nov 2011, pp. 327–332.

[4] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation of
matrix inversion using QRD-RLS algorithm,” in Asilomar Conference
on Signals, Systems, and Computers, 2005.

[5] D. Perrelet, A. Villanueva, M. Sundal, Y. Brischetto, D. Oberson, and
H. Damerau, “White-rabbit based revolution frequency program for the
longitudinal beam control of the CERN PS,” 2015.

[6] J. L. V. M. Stanislaus and T. Mohsenin, “Low-complexity FPGA
implementation of compressive sensing reconstruction,” in Computing,
Networking and Communications (ICNC), 2013 International Confer-
ence on, Jan 2013, pp. 671–675.

[7] N. Takagi, “Generating a power of an operand by a table look-up and
a multiplication,” in ARITH’13, Jul 1997, pp. 126–131.

[8] A. J. Chung, K. Cobden, M. Jervis, M. Langhammer, and B. Pasca,
“Tools and Techniques for Efficient High-Level System Design on
FPGAs,” CoRR, vol. abs/1408.4797, 2014.

[9] Cyclone V Device Handbook, 2012, http://www.altera.com/literature/hb/
cyclone-v/cyclone5 handbook.pdf.

[10] W. Wong and E. Goto, “Fast evaluation of the elementary functions in
single precision,” Computers, IEEE Transactions on, vol. 44, no. 3, pp.
453–457, Mar 1995.

[11] J. Low and C. C. Jong, “A memory-efficient tables-and-additions method
for accurate computation of elementary functions,” Computers, IEEE
Transactions on, vol. 62, no. 5, pp. 858–872, May 2013.

[12] D. Das Sarma and D. Matula, “Faithful bipartite ROM reciprocal tables,”
in ARITH’12, Jul 1995, pp. 17–28.

[13] M. Schulte and J. Stine, “Symmetric bipartite tables for accurate function
approximation,” in ARITH’13, Jul 1997, pp. 175–183.

[14] J. Stine and M. Schulte, “The symmetric table addition method for
accurate function approximation,” VLSI, vol. 21, pp. 167–177, 1999.

[15] J.-M. Muller, “A few results on table-based methods,” Reliable Com-
puting, vol. 5, no. 3, pp. 279–288, 1999.

[16] F. de Dinechin and A. Tisserand, “Some improvements on multipartite
table methods,” in ARITH’15, 2001, pp. 128–135.

[17] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. Meher, “Table size reduc-
tion methods for faithfully rounded lookup-table-based multiplierless
function evaluation,” Circuits and Systems II: Express Briefs, IEEE
Transactions on, vol. 62, no. 5, pp. 466–470, May 2015.

[18] M. Ito, N. Takagi, and S. Yajima, “Efficient initial approximation for
multiplicative division and square root by a multiplication with operand
modification,” Computers, IEEE Transactions on, vol. 46, no. 4, pp.
495–498, Apr 1997.

[19] M. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand, “Reciprocation,
square root, inverse square root, and some elementary functions using
small multipliers,” Computers, IEEE Transactions on, vol. 49, no. 7, pp.
628–637, Jul 2000.

[20] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in the
Analytic Number Theory and Computational Complexity. New York,
NY, USA: Wiley-Interscience, 1987.

[21] M. Flynn, “On division by functional iteration,” Computers, IEEE
Transactions on, vol. C-19, no. 8, pp. 702–706, Aug 1970.

[22] P. Rabinowitz, “Multiple-precision division,” Commun. ACM, vol. 4,
no. 2, pp. 98–, Feb. 1961.

[23] F. Willers and R. Beyer, Practical analysis: graphical and numerical
methods, ser. Dover Books on Science. Dover Publications, 1948.

[24] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of
polynomial-based hardware architectures for function evaluation,” in
ASAP’21, Rennes, Jul. 2010.

[25] J. A. Pineiro, J. D. Bruguera, and J. M. Muller, “Faithful powering
computation using table look-up and a fused accumulation tree,” in
Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-

15 2001, 2001, pp. 40–47.

