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Abstract—This paper presents an implementation of the
floating-point (FP) tangent function, optimized for an FPGA
containing hard floating point (HFP) DSP Blocks. This function
inputs values in the interval [−π/2,π/2], uses the IEEE-754
single-precision (SP) format, and has an accuracy conforming to
OpenCL requirements. The presented architecture is based on
a combination of mathematical identities and properties of the
tangent function in FP. The resultant design outperforms generic
polynomial approximation methods targeting the same resource
utilization spectrum, and provides better resource trade-offs than
classical CORDIC-based implementations. The presented work
is widely available as part of the Intel DSP Builder Advanced
Blockset.

I. INTRODUCTION

Many hardware implementations of trigonometric functions

use the CORDIC family of algorithms [1], [2]. Iterative

implementations of CORDIC consume low resources, and

are preferred when implemented as part of the FP unit of

embedded processors. Higher throughput applications require

unrolled versions, but these are recognized to be very stressful

to support in FPGAs because of the multiple, deep arithmetic

structures, with each level containing a wide adder. Chip-filling

designs using such structures are usually unable to close timing

at high frequencies [3].

Architectures based on polynomial approximations can be

used to implement the sine, cosine and division operators, but

additionally require the inverse function, with the attendent

area and latency costs. [4]. These approaches map better to

the recent FPGAs containing thousands of multipliers and

embedded memory blocks, but can be quite wasteful when

implementing the tangent function by means of operator

assembly [5], [6].

In [7] we implemented a SP FP tangent as a fused operator,

targeting fixed-point DSP Block resources. Here we extend our

previous work to make use of of embedded HFP DSP Blocks

available in newer devices. We show that significant resource

savings can be achieved by making use of these new functions.

II. ALGORITHM

We have presented an algorithm for computing the single

precision FP tangent in [7]. As the proposed architecture

presented here adapts the previous ideas for use with HFP

DSP Blocks, we will first summarize the key elements of the

algorithm.

We focus on computing tangent over the [−π/2,+π/2]
interval. If the full FP range is required then a range-reduction

phase can be implemented [8], [9]. We use symmetry to further

reduce the input interval: tan(−x) =− tan(x). Furthermore, we

use the fact that for very small inputs (< 2−wF/2), a good

approximation of tan(x) is x. With this restricted dynamic

range, a 36-bit fixed-point number can be used to represent

the input SP value error-free.

We first recursively expand the identity of the tangent of

the sum of two numbers into the tangent of the sum of three

numbers:

tan(a+ b+ c) =

tan(a)+ tan(b)

1− tan(a) tan(b)
+ tan(c)

1−
tan(a)+ tan(b)

1− tan(a) tan(b)
tan(c)

(1)

This can be approximated to:

tan(a+ b) =
tan(a)+ b+ tan(c)

1− (tan(a)+ b) tan(c)
(2)

provided that a, b and c, the components of the fixed-point

input are selected as:

a - 9bitc - 9bit b - 18bit

The reader is invited to consult [7] for a more detailed

explanation of the approximation that studies the cancellation

in the denominator.

III. IMPLEMENTATION TARGETING HFP FPGAS

The proposed architecture is presented in Figure 1 and is

based on Equation 2. The input is split into the 3 segments,

a, b and c. The first segments c and a are obtained by casting

the input into fixed-point, and aligning the work towards the

right, starting from weight 1, and using the exponent. The

main difference compared to [7] is the smaller shifter size;

for obtaining a and c we only use 9 + 9 bits (including

the hidden 1) when performing the alignment, and the right

shifter discards bits with weight smaller than 2−17. From the

respective 9 bits of a and c, the values tan(a) and tan(c) are

tabulated in SP from the 9 bits of a and c, respectively.

The objective is to obtain b in FP, as this will allow for an

efficient implementation of both numerator and denominator.
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Figure 1. SP FP tangent utilizing FPGA FP DSP Blocks

We first apply a mask on f racX , the 23 fractional bits of our

input. The mask value is read from a table indexed by the

4 least significant exponent bits. The table entries are 23-bit

values with the following format (from MSB to LSB): (2+i

zeros, 21-i ones). By applying this mask to the fraction of X

we obtain the constituent components of b, but a second step is

required on the FP value formed from (0, expX, fracPostMask)

to extract b. This second step requires creating the variable (0,

expX, 0) and pernforming the operation:

b = (0,expX , f racPostMask)− (0,expX ,0)

The numerator is obtained by adding tan(a)+b, then adding

this value to tan(c), all in FP SP. The right-hand side term

in the denominator, tan(c)(tan(a) + b), is also obtained by

performing the multiplication in FP, and reusing the result

tan(a) + b. Finally, the subtraction is also performed in FP

to calculate the denominator.

The piecewise-polynomial approximation-based inverse cal-

culation requires a function f (x) = 1/1+x with x ∈ [0,1) and

IM( f ) ∈ [0.5,1). The function f is simply obtained by making

x = f racDenom. The image of the function might be 1 in two

situations: (i) if the input is 1, or (ii) if the rounding of the

inverse overflows to 1. Both cases are captured by checking

bit weight 1/2, which forces the output to 1 if not set.

This has implications on setting the output exponent. The

exponent of the inverse denominator would normally be calcu-

lated as 2bias−expDenom, followed by a possible decrement

if the fraction inverse is < 1. This latter update is automated

Table I
SYNTHESIS RESULTS FOR RECENT FPGA ARCHITECTURES

Target Architecture Lat Freq. Resources

Arria 10 [7] 36 520MHz 8 DSPs, 6 M20K, 990ALMs

Arria 10 ours FP 32 487MHz 8 DSPs, 6 M20K, 393ALMs

Arria 10 tan(πx) [10] 37 545MHz 10DSPs, 3 M20K, 1935ALMs

in one single step, by changing the 2bias constant to newCst

(note that u is bit weight 1/2)

newCst = 111111ũu

IV. RESULTS

Table I presents the synthesis results for our proposed imple-

mentations obtained using Quartus Prime 17.0, fastest speed-

grade. Compared to our previous work in [7] the proposed

implementation consumes significantly fewer ALMs, and has

a shorter latency. Compared to an FPGA specific piecewise-

polynomial implementation of tan(πx) in [10] (which is ex-

pected to be 100-200LUT smaller for a limited input range)

our proposed architecture requires significantly fewer ALMs.

V. CONCLUSION

The HFP resources available in the DSP block provide

new levels of utility. Significant savings can be achieved by

restructuring fixed-point computations to make use of the new

HFP resources. Compared to our previous work, we have

migrated almost all computations into DSPs and memory

blocks. This improves performance in chip-filling designs by

having a more predictable place-and-route.
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