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Abstract—In this article we present a novel method for implementing floating point (FP) elementary functions using the new FP single precision

addition and multiplication features of the Arria 10 and Stratix 10 DSP Block architecture. Our application examples are log(x) and exp(x), two of the

most commonly required functions for emerging datacenter and computing FPGA targets. We explain why the combination of new FPGA technology,

and at the same time, a massive increase in computing performance requirement, fuels the need for this work. We show a comprehensive error

analysis, and discuss various implementation trade-offs that demonstrate that the hard FP (HFP) Blocks, in conjunction with the traditional flexibility

and connectivity of the FPGA, can provide a robust and high performance solution. The architectures presented in this work meet OpenCL accuracy

requirements. Our methods map extensively to embedded structures, and therefore result in significant reduction in logic resources and routing stress

compared to current methods. The methods allow leveraging the routing architectures introduced in the Stratix 10 device which results in high-function

performance.

Index Terms—natural logarithm, exponential, floating-point, single-precision, FPGA, FP DSP Block, Arria 10, Stratix 10
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1 INTRODUCTION

The motivation for this work is twofold. The HFP DSP FPGA

features enable new levels of utility, especially when combined

with the flexibility in connectivity; at the same time, new FPGA

applications such as those used in datacenters require very dif-

ferent functional capability and density than traditional FPGA use

models. The combination of greatly enhanced FPGA architectures,

combined with a vital need for higher performance density of new

applications, creates a strong incentive for this work.

Many of the new datacenter uses, such as web search and

data analytics, require log(x) and exp(x). A recent publication

by Microsoft Research [1] stated that the most commonly used

functions were log(x), exp(x) and div(x,y). Scientific computing,

including SPICE electronic simulations [2], and recent work at the

CERN Large Hadron Collider [3], [4], [5] indicate that elementary

functions are used extensively, and simulation time is strongly

related to their performance. Therefore, one use case for exp(x)
and log(x) when accelerating these applications involves using

many parallel and latency-sensitive instances.

The benefits of this work are many-fold: firstly, the reduced

soft logic requirements will allow for increased functional density

(absolute number of functions); secondly, the mapping of the

arithmetic portions of the functions to almost entirely embedded

features will reduce soft logic placement issues, thereby increasing

the computational density (the ability for a large number of

functions to be fit at a certain clock frequency); thirdly, the DSP-

based critical path allows for reaching high-frequencies in new

Stratix 10 devices for generally lower latencies.

GPU performance is often specified in terms of GFLOPs,

or now TFLOPs, of multiply-accumulates (MACs). GPUs often

have dedicated function accelerator blocks [6]; CPUs occasionally

have function accelerators, but most elementary functions are

typically implemented using proprietary Intel MKL libraries [7]

or open source libraries. Work by Markstein [8] detailed targeting

modern CPUs, and earlier works by Cody and Waite [9] showed

generic algorithm construction. The advantage of an FPGA over

a processor type architecture is that if we can find a method to

efficiently map a required number of elementary functions for

a particular application to uniformly distributed FP features - in

this case the HFP DSP Blocks - the sustained performance can

approach the peak performance of the device.

Elementary function design for contemporary FPGAs is a

complex task because of the multitude of implementation tradeoffs

exposed by the architecture features: logic, memory blocks and

fixed-point DSP Blocks. For instance, digit-recurrence methods

make extensive use of logic resources while polynomial approxi-

mation techniques use memory and DSP Blocks; the ratio between

memory and DSP Blocks can vary by changing the approximation

polynomial degree.

In contrast, microprocessor implementations of elementary

functions execute more of the computation using floating-point

(FP) arithmetic. FP units support fast execution of addition and

multiplication, and use these basic operations in software routines

for implementing more complex elementary functions. For most

functions, the software routine contains multiple branches of

execution, depending on the range of the input. Within these

branches various techniques for approximating the function are

used; some branches use high-degree polynomial evaluation (this

may extend to degree 20 or 30), including rational polynomial

approximations, Taylor expansions, digit-recurrence methods, and

quadratic convergence methods. As an added complication, the

arithmetic used internally is often higher precision than the target

precision of the function; for instance double precision elementary

functions use double-double and triple-double arithmetic [10].

This experience is of great concern for FPGA, as multi-precision

use would require either multiple cycle arithmetic, which would

disrupt the pipeline advantage of a hardware implementation, or

need a very expensive multiple operator construction. One of our

goals is to find an effective method that works completely in the

native input/output precision of the function.

Porting these implementations directly to the FPGA architec-

ture by means of high-level synthesis tools is inefficient. The dis-

joint nature of execution branches potentially allows for resource
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sharing, however the different algorithms used within the branches

makes potential sharing difficult. Within branches, the high-degree

polynomial evaluation requires a significant number of additions

and multiplications for high-throughput implementations.

Efficient FPGA implementations need to make use the entire

mix of FPGA features. For instance, the high-degree polynomial

evaluations may be replaced by piecewise polynomial approxi-

mations where low-degree polynomials are used to provide an

equivalent approximation quality [11]. The coefficients for these

low-degree polynomials are stored in memory blocks, available in

thousands on modern FPGA devices. Other bit-level manipulation

techniques, costly in microprocessors but virtually free in FPGAs,

can be used during the range reduction and reconstruction stages.

This work is organized as follows. Section 2 provides a

background on the FP representation, the Arria 10 and Stratix 10

FPGA architectures and the accuracy context of this work, given

by the OpenCL standard. Section 3 reviews other published log(x)
and exp(x) works to give a context to the improvements made

in this work. Section 4 describes algorithms for mapping log(x)
into hardware, describing an improved range reduction method.

Sections 4.1 and 4.1.2 present the implementation approach to-

gether with a comprehensive error analysis. Section 5 introduces

the exponential function and gives basic implementation strate-

gies. Further sections 5.1 and 5.2 present a two level argument

reduction and discuss the implementation strategies for modern

FPGA devices. A discussion of the synthesis results is provided in

Section 6.

2 BACKGROUND

2.1 Floating-Point

Let x be the FP input such that x = (−1)s2eM where s denotes

the sign of the number – with values ∈ {0,1}, e denotes the

exponent and M denotes the mantissa. The IEEE-754 standard

for FP arithmetic [12] uses a normalized mantissa with M ∈ [1,2),
except for the subnormal range. Since the leading bit of the binary

mantissa representation will be a constant one, it is omitted in

the representation. Consequently we use the following notation:

x = (−1)s2e1. f where f denotes the fraction of the FP number.

The number of bits used to represent the exponent and fraction

give the different FP formats of standard. In this work we focus on

the single-precision (binary32) format, having an 8-bit exponent

and 23-bit fraction. When dealing with FP arithmetic a useful tool

when managing errors is the notion of ulp, which is defined by

Harrison [13] as the distance between two adjacent FP numbers.

2.2 Arria 10 and Stratix 10 FPGAs

The base platform for our work is the Arria 10 FPGA with HFP

DSP Blocks supporting IEEE-754 single precision [14]. This work

also extends to the new Stratix 10 device, having HFP features

similar to those present in the Arria 10 FPGA. The relevant

hardware features for this work are:

• the basic logic-element in Arria 10 and Stratix 10 devices

is the ALM (Adaptive Logic Module). ALMs are grouped

by 10 in a LAB (Logic Array Block). The ALMs within a

LAB have extensive interconnect capabilities, but the LAB

has a reduced number of Input/Output connections.

• both Arria 10 and Stratix 10 contain M20K memory blocks

which can be configured in 512x40-bits or 1024x20-bits

modes;
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Figure 2. DSP Block in FP configuration

• DSP Blocks in both devices can be configured in fixed-

point mode to execute one 27x27-bit multiplication, 2

independent 18x19 multiplications (Figure 1) or one sum-

of-two 18x19-bit multiplications;

• the same DSP Blocks which can be configured in FP mode

to execute one single-precision addition, multiplication,

accumulation, one multiply-add operation or one multiply-

accumulate operation (Figure 2).

The configurable latency is not detailed in this block diagram.

Up to four pipeline stages are available in FP mode: an input stage,

a FP multiplier pipeline stage, a FP adder input stage, and an

output stage. Each pipeline stage can be optionally bypassed. For

maximum multiply-add performance, all four stages are employed.

In the case of a standalone FP multiplier, up to three stages

can be used. Likewise, three or four stages can be used for a

standalone FP adder. Although only two registers directly connect

to it, using the DSP Block input stage will remove the additional

combinatorial path from the input of the DSP Block to where the

FP adder input register is physically located inside the block.

The DSP Block is designed to approximately match the

maximum performance of the FPGA. However, it is known that

the system level performance of a typical large design may be

considerably lower than this. For example, although a 20nm planar

FPGA may have a maximum performance in the 500MHz range,

it is not uncommon for complex implementations to achieve only

half of that.

The configurable latency of the DSP Block will allow us to
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adjust the latency and performance of the DSP Block downwards

to match the current design performance. As our goal is to map,

as much as possible, this function to only embedded features,

we are able to gain the benefit of latency reduction through

a planned performance drop, while not affecting the way that

multiple functions will fit into the device.

Performance drop in chip-filling designs often happens even

with correct functional pipelining. A few reasons are: the lack

of registers in the proximity of a short path between logic levels

(the pipeline register is further away from each logic level, than

the logic levels are one from another), far placement of adjacent

logic, and the IO Gap crossing.

In order to address this global issue and enhance system-level

performance, Stratix 10 introduces a novel routing architecture,

HyperFlex, which embeds pipeline registers in the routing fabric.

Using a re-timing algorithm, pipeline registers which otherwise

could be placed in sub-optimal positions possibly causing critical

path failures, can now be placed on the routing paths directly. The

new challenge for Stratix 10 devices is adding a sufficient number

of pipeline registers, especially since target frequencies are now

much higher.

2.3 OpenCL Conformance

Recently, OpenCL has become a supported design flow for the

FPGA industry [15], [16]. The promise of efficient implemen-

tation with a heavily abstracted design entry may make FPGAs

accessible to programmers, who are not typically well versed in

hardware design. OpenCL conformance requires a large, clearly

defined set of vectors (approximately 4 × 109 individual tests)

for each function. Each function has a maximum error allowed,

which in the case of single precision log(x) and exp(x) is 3ulp.

For an embedded context, including FPGAs, an extra 1ulp of

error is permitted. Correct rounding is not required for elementary

functions, including log(x) and exp(x). Additionally, for single-

precision the OpenCL standard allows flushing subnormals to

zero. Consequently, the architectures described in this article also

flush subnormals to zero on input and output.

3 PREVIOUS WORK

The problem of FP log(x) has been well studied for FPGA targets,

although most of the published methods are not suitable for

the new generation of computing applications, because of area,

performance, latency, and accuracy.

The performance limitations of software (SW) elementary

function have been recognized; in comparison to hardware, table

sizes for the exact portion of the functional decomposition are

usually small (for cache management reasons), necessitating many

term power series for the approximations portions of the calcula-

tion. The motivation for a fast single precision FP log(x) was

described in [17], which stated that an improvement was needed

over the software library example of a 94 cycle optimized log(x)
[18] (GNU glibc requires 196 cycles for the same function [19]).

A speedup of 6-8 times was realized, but with the tradeoff of large

tables, and an decrease of accuracy by one to two decimal digits

in the returned result. This algorithm was mapped to a Virtex II

by Stamatakis [20]. Although the area is competitive (621 LUTs,

932 registers, and 3 DSP48E Blocks), the accuracy is much lower

than our target OpenCL compliance.

In [21], Bruce, et.al. describe a library of FP functions,

including log(x). Range reduction for log(x) was performed using

division, which is very expensive, with a long latency, compared

to the methods described in this work. The latency of the function

was not reported.

Dinechin and Detrey showed a FP logarithm in [22]. Their

approach did not use a range reduction for the mantissa process-

ing, but instead approximated the contribution of the mantissa

directly using a Higher-Order Table-Based Method HOTBM [23]

polynomial evaluation. A combinatorial version of their design

required 830 slices (each Virtex II slice contains two 4LUTs and

two registers) and 9 18x18 multipliers, with an estimated 10% area

increase to support pipelined operation, which they estimated to

be able to achieve 100MHz.

A recent design by Xilinx [24], uses a CORDIC datapath [25],

with multiplier-based post-processing. Single precision accuracy

is claimed but not proven; a figure is shown where the maximum

error is 1 ulp over a 2K sample set. The core is large compared

to the other works: a Virtex7 -3 speed grade implementation

requires 4.9K LUTs and 8 DSP48Es, with a very long latency

(64), and modest performance (332MHz for a single instance).

In our experience, the CORDIC method, with deep pipelines of

subsequent carry chains, does not allow for a high functional

density, as the relative placement of the LUTs will be constrained

by the carry chains. While a single instance may exhibit good

performance, multiple instances will show the effects of routing

stress and congestion.

There are numerous works targeting the exponential function.

Early works adapted software algorithms, [26] but map poorly on

FPGAs. Even with the support of HFP DSP resources, a rough

resource estimation of [26] yields in ≈ 17 DSPs, tables and DSPs

for the division and additional tables for the implementation, that

is w/o counting any logic required for synchronization.

A single-precision implementation of the exponential in the

context of log-normal random-number generators is presented in

[27]. The architecture targets fixed-point arithmetic, and computes

the term ey, y ∈ (− log2/2,− log2/2) by splitting y = y1 + y2 and

computing both exponentials by tabulation. Few details are given

in terms of bit-widths for y1 and y2, and accuracy is not discussed.

The current state-of-the art for openly available and aca-

demically reviewed FPGA implementations of the exponential

is probably [28], with the implementation available in the open

source tool FloPoCo [29]. The work builds on [27], but employs

a different implementation for computing ey, based on a piece-

wise polynomial approximation. Section 6 compares and contrasts

results obtained from FloPoCo for both the exponential and natural

logarithm, against our proposed architectures. Although neither

Arria 10 nor Stratix 10 devices are supported in FloPoCo 2.5.0,

we have tried our best to provide fair comparisons by using a

Stratix V target (-target=StratixV) which architecturally is close

to an Arria 10 target. Since pipelining fidelity will be worst than if

a native Arria 10 target would be available, we have tried to obtain

results comparable in frequency by asking increasingly higher

frequencies from the automatic pipelining generation feature.

4 NATURAL LOGARITHM

Computing the natural logarithm for x starts with applying the

logarithm properties on the FP representation of x:

log(x) = log((−1)s2e1. f )

=e log(2)+ log((−1)s1. f )
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The natural logarithm is only defined on positive inputs, so the

above formula can be simplified:

log(x) =

{
e log(2)+ log(1. f ) s = 0,
NaN s = 1

We will focus in the following on the first branch of this

function. The sum e log(2) + log(1. f ) may be the result of a

massive cancellation when e =−1 and 1. f → 2. In order to return

the sufficient number of meaningful result bits for a FP result, the

fixed-point precision of the calculation, together with the accuracy

of both terms needs to significantly increase. Alternatively, if the

massive cancellation is prevented then there will be no loss of

accuracy and hence no need for an extended internal precision.

This is accomplished by restating the formula with a single branch.

log(x) =

{
e log(2)+ log(1. f ) 1. f <

√
2,

(e+1) log(2)+ log( 1. f
2
) 1. f ≥

√
2

The cancellation condition now triggers the second branch. When

1. f becomes greater than
√

2 and e = −1 the first term becomes

zero and all the accuracy is then returned by the second term.

The following notation is used:

log(x) = E log(2)+ log(m) (1)

where

E =

{
e 1. f <

√
2,

e+1 1. f ≥
√

2
(2)

and

m =

{
1. f 1. f <

√
2,

1. f
2

1. f ≥
√

2
(3)

4.1 Implementation

The first term in Equation 1 (E log(2)) can be obtained directly

in FP by tabulation. The 8-bit exponent is used to address a table

(in the case of an Arria 10 device, a single M20K configured

in 256x40-bit mode) which stores all the possible values of the

product. By construction, this term will have a 1/2ulp error

bound. Alternatively, if memory blocks are scarce, a floating-point

constant multiplier [30] can be used.

Figure 3 depicts the values of the second term in Equation 1,

log(m) for m ∈
[√

2
2
,
√

2
)

(or ≈ [0.7,1.41) in decimal). Calcu-

lating over this small, gently increasing monotonic section, as a

consequence of the rewrite in Equation 1 eliminates the chance of

cancellation errors. The value of log(m) may be computed using a

Taylor series expanded in 1, for log(1+y) with y sufficiently close

to 0, or m is sufficiently close to 1.

The Taylor expansion used has the form:

log(1+ y) = y− y2

2
+

y3

3
− y4

4
+ ...

Implementation accuracy depends on the approximating polyno-

mial degree: the higher the polynomial degree, the better the ac-

curacy. Additionally, the approximation interval size also impacts

accuracy: the smaller the interval, the higher the accuracy. An

efficient FPGA implementation uses a truncated Taylor series with

a low number of terms, in order to keep DSP resource usage low.

Consequently, in order to obtain a sufficiently high accuracy, the

approximation interval size needs to be narrowed.

For a given input and output precision p (for single precision

p= 1+24) and a small interval |y|< 2−ymax , the higher order terms

1.4

m

1.31.21.11.00.90.8
-0.4
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0

0.1

0.2

0.3

0.4

Figure 3. log(m) Approximation Range

with contributions smaller than the ulp of the maximum magnitude

term can be dropped. In other words in the expansion

log(1+ y) = y

(
1− y

2
+

y2

3
− y3

4
+ ...

)

as long as the values of terms such as y3

4
are smaller than 2−p−2

these values will not contribute to the final result, and can therefore

be truncated.

The current range of m ∈
[√

2
2
,
√

2
)

translates into y ∈
[−0.3,0.41]. Due to this wide range of y, the truncated Taylor

series with sufficient accuracy would require tens of terms (same

order as the required precision) which leads to a costly imple-

mentation for a high-throughput FPGA architecture. A general

technique used is to reduce the range of the input so that the

computation is less costly. The final result is obtained after a

reconstruction stage and is based on the computation on the

reduced argument. Conversely, a microprocessor-based implemen-

tation would prefer the high number of FP operations to the

branching required by the range reduction.

4.1.1 Range Reduction

Range reduction requires a division, but as we have seen [21] this

is not efficient for hardware, in terms of both latency and area:

log(a/b) = log(a)− log(b)

where a is desired to have the form 1+ y.

Ideally, we will try to replace the division with a multiplicative

inverse. We want to represent m = (1+y)/rmtop
where rmtop

is easy

to compute and y is small, say |y| ≤ 2−9. For this we first choose

mtop as the most significant 9 bits of m; the inverse of mtop denoted

here as rmtop
can easily be computed via tabulation. Next, the value

of y is simply obtained:

y = m · rmtop
−1. (4)

The term log(m) is therefore computed as:

log(m) = log(1+ y)− log(rmtop
). (5)

4.1.2 Accuracy for mapping to HFP resources

When computing y we can either use FP or fixed-point arithmetic.

Properly scaled and bounded, the mantissa portion calculation in

fixed-point arithmetic can achieve single precision accuracy, but

the final summation requires significant FPGA resources due to

alignment shifters.

Our logarithm implementation computes final result as the sum

of three FP terms, Ã, B̃ and C̃:

log(x) = E log(2)︸ ︷︷ ︸
Ã

+(log(1+ y)︸ ︷︷ ︸
B̃

− log(rmtop
)

︸ ︷︷ ︸
C̃

) (6)
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Let us assume that the three terms are computed in FP as

accurately as possible, that is to say, each having a maximum

error of half ulp. We use the following notation where the Ã

variables represent values post rounding, non tilde variables are

mathematical values and δ represents the value of a half ulp.

Ã = A(1+δA)

B̃ = B(1+δB)

C̃ =C(1+δC)

We use the notation in [31], and do not distinguish between δs.

R = (A(1+δ)+(B(1+δ)−C(1+δ))(1+δ))(1+δ)

= A(1+δ)2 +B(1+δ)3−C(1+δ)3

= A(1+θ2)+B(1+θ3)−C(1+θ3)

≤ (1+θ3)(A+B−C)

Here |θn| ≤ nu
1−nu

with u = ulp/2. This formula suggests that if

A+B−C will have a magnitude close to max(A,B,−C) then the

relative error in the final result is slightly worst than 1.5ulp (θ3).

This is a simplistic error bound, and the actual value can be

worst if max(A,B,−C)≫ A+B−C. We present next a detailed

analysis of the possible cases:

• if A = 0 then the accuracy is returned by the term B−C.

We distinguish two sub-cases, depending on m:

– for m ∈ [1 − 2−9,1 + 2−9], no range-reduction is

required; y is exact and the final accuracy depends

on the accuracy of B.

– for m ∈ [
√

2/2,1 − 2−9] ∪ [1 + 2−9,
√

2], range-

reduction is required. y is calculated using Equa-

tion 4. For m ≥ 1+ 2−9 no cancellation can occur

between B and C. This can be seen in Figure 4. The

relative error can be written as R = (B−C)(1+θ2)
making the final accuracy be slightly lower than

1ulp. For m≤ 1−2−9 a 1 bit cancellation can occur.

The final relative error is double the relative error of

C, which is accurate to 1/2 ulp since it is tabulated.

• if A 6= 0 then A will be the dominant term. A 1-bit

cancellation can happen when E =−1 and m> 1, or E = 1

and m < 1. In this cases the final accuracy is two times

lower than the accuracy of A which is computed accurately

to 1/2 ulp.

4.1.3 Computing term C̃ = log(rmtop
)

When tabulating the natural logarithm of the inverse rmtop
we make

use of the property that m < 1 only when 1. f >
√

2 (Equation 3),

which is also our branch condition. Therefore, the table address

will hold the branch bit and the top 9 bits of f (the implied leading

one is not used, but accounted for). This allows us to double the

accuracy of the inversion when m < 1 as there is one extra bit of

information used in the input.

Since this result is obtained through tabulation, the accuracy is

again guaranteed to be within 1/2ulp.

4.1.4 Computing y

The accuracy of log(1+y) will directly be influenced by the accu-

racy of y. If no range reduction is necessary (1−2−9 <m< 1+2−9

– m close to 1), the cancellation during subtraction (y =m−1) will

ensure that y is exact. Range-reduction is necessary for m outside

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.994 0.996 0.998 1 1.002 1.004 1.006

log(1+y)-log(rmtop)

-log(rmtop)
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m

Figure 4. log(x) Cancellation Boundaries for B−C in red. Contribution of B is

depicted in blue and C in green.

this interval, and we must ensure that y is computed with sufficient

accuracy.

When computing y =m ·rmtop
−1 in FP our operands will be FP

numbers. The product m ·rmtop
is bound by construction to have the

form 1.0000000001X...L . Here L is used here to denote the LSB

of the m ·rmtop
mantissa, and the weight of the round-off error is 1/2

the weight of L. The value for y is obtained by subtracting 1 and

normalizing: y = 1.XX...L000000002−10. Post subtraction, the

round-off error from m · rmtop
will be amplified by the cancellation

size, and will have a magnitude of 2−23+10 (the position of L is

now 10 positions higher in the mantissa). More formally:

y = m · rmtop
(1+δr)−1

= m · rmtop
−1+m · rmtop

·δr

Consider we are working in precision p with an unbounded

exponent range, then δr ≤ 2−p−1. In the above formula we inject

the maximum error value and therefore have:

y = m · rmtop
−1+m · rmtop

·2−p−1

Consider a cancellation size ψ, then the error in the y term is:

y ≈ (m · rmtop
−1)(1+

m · rmtop
·2−p−1

m · rmtop
−1

)

≈ (m · rmtop
−1)(1+

m · rmtop
·2−p−12ψ

2ψ(m · rmtop
−1)

)

≈ (m · rmtop
−1)(1+2−p−1+ψ)

This shows that given a ψ-bit cancellation -which we will get

by multiplying m by a roughly ψ-bit accurate approximation of

its inverse - the error resulting when computing y provided that

no rounding error was actually performed on m · rmtop
, is roughly

2ψ ulp. The value y is then used to compute a truncated Taylor

expansion for log(1+ y), which is term B in our equation. Because

of the linearity of the function on the interval close to 1, the 2ψ

ulp error in the input will roughly translate to a 2ψ ulp error in the

output.

log(1+ x) = x− x2/2+ x3/3− x4/4+ ...

log(1+ x(1+δx)) = x(1+δx)− x2(1+δx)
2/2+ ...

This error will be the final error when both terms A and C are zero

in our equation. This only happens when m ∈ [1− 29,1+ 2−9], in

which case no range-reduction is necessary. The 2ψ ulp error also
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m · rmtop
= 1.000000000XXXXYYYYYYYYYYYYY

j = 1.000000000XXXX +

i = 1YYYYYYYYYYYYY−
k = 1

Figure 5. Fixed-point product to FP decomposition showing i, j and k mantissa

alignments

occurs for inputs roughly outside this interval, and is shown in

Figure 4 when terms B̃ and C̃ have roughly the same magnitude

and Ã = 0.

Therefore, the accuracy of 1 + p-bits stored in rmtop
is not

sufficient having this ψ-bit cancellation. Storing more accuracy

in rmtop
is impossible using the single precision format (which

was chosen to match the HFP DSP Blocks). The requested error

for rmtop
needs to be smaller than 2−p−1−ψ provided that we can

produce the m · rmtop
product without rounding errors.

4.1.5 Improved accuracy range reduction

We store rmtop
in fixed-point on a precision 1+ p+ψ bits. The

multiplication m · rmtop
is a fixed point multiplication with the

result very close to 1; m is multiplied by a 1+ p+ψ bit accurate

inverse computed using only the leading ψ bits of m. The result

will have a deterministic position for the leading one, but after the

subtraction m ·rmtop
−1 there is no guarantee where the leading one

is found. Hence, a classical leading zero counter and left shifter

(normalization stage) is needed for converting this value into FP.

We now present a novel way of performing this calculation

efficiently using the available HFP DSP Blocks; the purpose of

this stage is to obtain an accurate FP value y which can then feed

into the Taylor polynomial evaluation stage.

We accomplish the translation between the fixed-point product

m · rmtop
, via the difference m · rmtop

− 1 into FP by exploiting the

format of this product: leading ’1’ followed by a number of zeros

followed by information bits.

m*rmtop = 1.000000000XXXXYYYYYYYYYYYYY

The idea is to represent the fixed-point product m · rmtop
as a

sum of FP numbers having a small overlap: m · rmtop
= j + i− k.

Once accomplished, the difference m · rmtop
− 1 can be performed

using FP arithmetic only.

A very efficient way of obtaining FP values from the fixed-

point product m · rmtop
is to:

• take j as the most significant 24-bits of the product;

• inject a ’1’ having a weight equal to the LSB position of j

and take i as the 24 bits starting with this injected ’1’ and

the next 23 bits of the product;

• since an artificial ’1’ was inserted it needs to be subtracted

using k.

The leading ’1’ injected into i is used in order to avoid

the leading-zero counting for obtaining i and obtain directly a

normalized FP value.

Figure 5 shows the fixed-point alignments of the mantissas of

the 3 FP values created against the fixed-point product m · rmtop
.

The full computation of y further requires subtracting the FP

value ’1’. The required order of operations is:

y = m · rmtop
−1

= ( j+ i− k)−1

= ( j−1)− k+ i (7)

One of the 3 FP operations in Equation 7 can be saved by

restructuring the calculation as follows:

y = ( j− (1+ k))+ i (8)

and observing that the weight difference between ’1’ and k,

which are both constants, allows packing them into one single

FP mantissa, without actually preforming a FP addition.

The extra accuracy required for y before feeding into the

polynomial evaluation stage is obtained after the addition of the i

term. The typical values for ψ are 8-11 bits, meaning that 8-11 bits

of m are used to address a table which outputs a 1+ p+ψ precision

value. These values are selected so to match the characteristics of

the embedded memory blocks.

4.2 Architecture

The architecture of the single precision natural logarithm is de-

picted in Figure 6. For simplicity, the FP input x is split into its 3

components, the sign, the exponent and the fraction. The branch

condition (1. f >
√

2) is replaced by 1. f > 1.5 for simplicity, which

only uses MSB of the fraction as the branch condition. The Ã term

is obtained on the left from a table indexed by E (see Equation 2).

The m argument (Equation 3) is calculated by the central

multiplexer by selecting between f and f ≫ 1 according to

the branch condition. Using the leading 10-bits of m (mtop) the

fixed-point inverse (rmtop
), is computed using a table with an ex-

tended precision. A fixed-point multiplier then allows us to obtain

(mrmtop
). Next, the FP subtracter and adder perform Equation 8 in

order to obtain y. Data is fed to these units through a network of

multiplexers which allow combining the case when |m| ≤ 1+2−9

within the same datapath. When close is high, the subtracter inputs

x and the constant 1, while the adder will simply add zero to this

result; additionally, the third term in Equation 6 will also be set to

zero, since no range reduction is necessary in this case.

The truncated Taylor series is computed using a Horner

scheme in order to minimize resources. Sequences of a mul-

tiply/add pairs are mapped to individual FP DSP Blocks. The

final value for log(m) is obtained by subtracting log(rmtop
) in FP

from the Horner evaluation output. The final result is obtained by

summing E log(2) to this value.

By inspection, the Taylor series maps to three chained HFP

DSP Blocks, with the FP adder in the last block also adding

in log(rmtop
). Three additional HFP DSP Blocks configured in

FP adder-only mode are used in the circuit in order to prepare

the input argument for the Taylor series, and to implement the

final summation. Two more DSP Blocks, configured in fixed-

point, implement a 36x34-bit fixed-point multiplier to provide

the multiplicative inverse function required by the range reduction

operation. Synthesis results for the natural logarithm functions are

presented in Section 6.

5 EXPONENTIAL

The floating-point exponential function is defined on a limited in-

put range. In single-precision the maximum input value for which
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Figure 6. Architecture for the single-precision natural logarithm

the exponential has a representable output is ⌈log(2127(2−2−23))⌉
or approximately 88.72 in decimal, and the minimum one is

⌊log(2−126)⌋ or −87.33 in decimal. Therefore, the input range for

the exponential is defined on the interval [−87.33,88.72]. Smaller

values outside this interval result in an underflow (return 0), while

larger values outside the interval will overflow (return +∞).

The exponential of a floating-point value x = (−1)s2e1. f is

computed using a rewrite of x that has the following property:

x = Elog(2)+ y (9)

E is an integer and y ∈ (−log(2)/2,+log(2)/2). The rewrite in Equa-

tion 9 reduces the range on which the exponential is computed to

the range of y, and allows for a straightforward implementation:

ex = eE log(2)+y

= elog(2E )ey

= 2Eey (10)

The values E and ey in Equation 10 are close to the exponent

and mantissa of the result. The range of y ∈ (−log(2)/2,+log(2)/2),

implies that ey belongs to (1/
√

2,
√

2). The result mantissa needs to

be normalized when ey < 1, which involves a potential 1 position

shift and exponent update (Equation 11).

ex =

{
2Eey if y ∈ [0,+log(2)/2)
2E−12ey if y ∈ (−log(2)/2,0)

(11)

The integer E is defined as the value for which the product

E log(2) is closest to x. Therefore E is found by dividing x by

log(2) and then rounding this value to the nearest integer value

E =

⌊
x

log(2)

⌉
. (12)

Having found E, y is obtained using Equation 13, and by construc-

tion y ∈ (−log(2)/2, log(2)/2)

y = x−E log(2). (13)

5.1 Mapping E and y compute to the FPGA

5.1.1 Known FPGA implementation techniques

Computing y in Equation 13 requires computing E and the

intermediary value K defined in Equation 14.

K = E log(2). (14)

The reduced range of x for single precision (approximately

[−87.33,88.72]) allows casting x into fixed-point x f xp. A fixed-

point constant-multiplier by the constant C1/log(2) = 1/ log(2) (best

implemented using the KCM technique [32]) is used to obtain

Ẽ = x f xp ·C1/log(2). The value E is obtained by rounding the fixed-

point value Ẽ to the nearest integer, which requires an adder.

E = ⌊Ẽ⌉

The intermediary variable K in Equation 14 is computed using

another constant multiplier by Clog(2) = log(2). Finally, y is found

by performing a fixed-point subtraction (Equation 13).

The difference y may be the result of a large cancellation when

the two terms have close values. In order to avoid a massive loss

in accuracy caused the cancellation, term K needs to be computed

on roughly twice the precision of x.

These implementation techniques are generic and lead to

costly implementations. From a fixed-point perspective these can

be improved, and some of these optimizations are presented in the

next section. From a general mapping perspective, these methods

have been developed having fixed-point FPGAs in mind, and make

no use of FP arithmetic. Consequently, we will introduce the

required adaptations for taking advantage of the HFP features,

all in an optimized context.

5.1.2 Proposed FPGA-specific optimizations

A number of possible optimizations will be presented in this sec-

tion. Some of these are included in the architectures benchmarked

in the Results section. The correspondence between optimizations

and benchmarked architectures will be highlighted as required.

Computing E requires a constant multiplier. The area and

latency of this constant-multiplier depends on the input size (x f xp)

which for single-precision is 33 bits (size given by the magnitude

of x f xp and the fraction bits kept for when x f xp ·C1/log(2) can be

different than 0). One solution to reduce the size and latency of the

constant multiplier is to reduce the precision of its input. By using

8 magnitude bits (including the sign) + 1 fractional bit of the fixed-

point x f xp that we denote by x f xpRed , the area and latency of the
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constant multiplier is considerably reduced. The reduced latency

allows starting the computation of K (Equation 14) sooner, and

overall reduces path-balancing register requirements. Note that in

general x f xp may still required for computing y (Equation 13).

However, in none of our proposed architectures x f xp actually needs

computing.

Using a less accurate x f xpRed implies that the new value:

Ẽ ′ = x f xpRed ·C1/log(2)

will be less accurate than Ẽ . Since x f xpRed is obtained from x f xp

by truncating at position 2−1 (include 1 fractional bit) |x f xp −
x f xpRed | < 2−1 and therefore |Ẽ − Ẽ ′| < C1/log(2)2

−1 < 0.722. With

E = ⌊Ẽ⌉ and E ′ = ⌊Ẽ ′⌉, the difference |E−E ′| ≤ 1 with E,E ′ ∈Z.

By reducing the precision in x f xpRed the newly obtained E ′ is

no longer the integer value for which the E ′ log(2) is the closest to

x, but can be one unit off: E ′ ∈ {E − 1,E,E + 1}. Consequently,

y′ =X−E ′ log(2) belongs to the wider interval [−3log(2)/2, 3log(2)/2].
For this input domain the function ey′ will produce a result in the

interval (1/2
√

2,2
√

2) or ≈ (0.35,2.83). The wider output interval

for ey′ requires computing ey′ with one more bit of accuracy and a

slightly more elaborate normalization stage, but which still fits in

one table lookup (LUT6):

ex =






2E ′+1 ey′

2
if ey′ ∈ [2,2

√
2)

2E ′
ey′ if ey′ ∈ [1,2)

2E−12ey if ey′ ∈ [1/2,1)

2E−24ey if ey′ ∈ (1/2
√

2, 1/2)

(15)

The function which computes E ′ inputs the 9 bits of x f xpRed :

1 (sign) + 7 (magnitude) + 1 (fraction), and outputs 9 bits. The

function that computes K′ = E ′ log(2) inputs the 9 bits of E ′.
Since computing K′ ultimately depends only on the initial 9 bits

of x f xpRed , the two computations can be fused in order to reduce

latency. Obtaining K′ using table-based approach significantly

reduces latency of computing y′, required for unlocking the more

costly calculation ey′ . The value of E ′, still required for the final

value of the exponent, may be obtained either using a constant

multiplier or a similar table. Nonetheless, the computation of E ′ is

now outside the critical path. The exponential architectures Arch1

and Arch2 in Table 1 make use of this architectural optimization.

One calculation which can still be improved in terms of latency

is obtaining the fixed-point x f xpRed by first obtaining x f xp. The 33-

bit wide barrel shifter requires multiple levels, thus having a long

latency. One alternative which reduces latency at the expense of

resources is using a smaller barrel shifter which only inputs the

bits of x which can appear in x f xpRed . The exponential architectures

Arch1 and Arch2 in Table 1 make use of a small barrel shifter of

obtaining the reduced-precision x f xpRed . The difference between

these architectures is highlighted in Section 5.2.2.

Another alternative is to obtain x f xpRed via tabulation. The

format of x f xpRed includes 7 magnitude bits + 1 fractional bit,

and the sign bit (8+1 bits in total). In order to obtain these bits via

tabulation we need to input the following information: the top 7

bits fraction bits of x, the sign bit, exponent bits that describe the

valid alignments (explained below). Figure 7 shows all the valid

alignments of x in fixed-point that are used for x f xpRed . In red we

highlight the implicit one, and the light blue we show the top 7

fraction bits of x in all valid alignments. In pink we highlight the

exponent bits which input the table. The exponent overflow case

is captured separately, so a total of 1+3+7=11 bits are required for

driving the x f xpRed table.

1 0 01 1 1 1110

1 0 01 1 1 110 0

1 0 01 1 110 0 0

1 0 01 110 0 0 0

1 0 1 110 0 0 0 0

1 0 110 0 0 0 0 0

1 010 0 0 0 0 0 0

0 110 0 0 0 0 0 0

0 10 0 0 0 0 0 00

0 0 0 0 0 0 0 01

0 0 0 0 0 0 01 1

0 0 0 0 0 01 11

0 0 0 0 01 1 11

0 0 0 0 01 1 11
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0 0 01 1 1 1 11
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Figure 7. Allowed alignments for x f xpRed

The tabulation of x f xpRed maps into one M20K block in

211 × 10-bit configuration. The 3 exponent bits will only allow

shifting in valid positions, and will never shift out the input.

When the exponent of xexp ≤ −2, E ′ = 0 → K′ = 0 and therefore

y′ = x f xp. This is accomplished by selecting x f xp instead of y′ in

computing ey′ (or equivalently masking K′). We have not applied

this optimization alone to the exponential architecture as we did

not believe that the 2 cycle memory block would significantly

improve latency over a small barrel shifter.

Since x f xpRed is the input to the stage computing K′ also by

tabulation we can fuse the two tables together such that K′ =
f unc(x f xpRed). Fusing the tables will reduce the latency to the

latency of an M20K, at the expense of approximately doubling

the memory count. The exponential architecture Arch3 in Table 1

highlights the resource tradeoffs of this architectural choice.

The value y′ can be computed in fixed-point:

y′f xp = x f xp −K′. (16)

The fixed-point difference may be subject to a cancellation,

when both terms have close values. This requires computing

K′ on a higher precision, so that post subtraction, the number

of significant bits in the difference is sufficient to compute ey′

sufficiently accurate.

As opposed to current state-of-the-art implementations using

a fixed-point y′, our goal is to obtain y′ in FP, and make use

of the HFP blocks in evaluating ey′ . Obtaining y′ in FP can be

done casting the fixed-point value y′ to FP. This requires a leading

digit counter, absolute value calculation, left shifter, and possibly

rounding and is in general costly both in terms of resources

and latency. We have not explored this implementation further

as resource requirements seemed significant.

Alternatively we focus on obtaining K′
f p directly in FP, and

use HFP-supported arithmetic in order to obtain y′f p. Similar to

obtaining y′f xp, a cancellation during the subtraction can lead to

a massive accuracy loss. Therefore, K′
f p needs to be computed

with more accuracy, and will be stored as an unevaluated sum of

non-overlapping FP numbers:

K′
f pUneval = K′

f pHigh +K′
f pLow.

Having the higher accuracy K′
f pUneval, y′ is obtained with the

following operations:

y′ =x−K′
f pUneval

=x− (K′
f pHigh +K′

f pLow)

=(x−K′
f pHigh)−K′

f pLow (17)

Whenever the exponent of x, xexp ≤ −2, K′
f pUneval needs to be

set to 0. This is done by masking the exponent and fraction bits to

reset the encoding of K′
f pHigh and K′

f pLow to 0. Since the embedded

floating-point arithmetic in the DSP Block flushes subnormals on
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B

A

y′

Figure 8. The argument reduction exemplified on fixed-point y′

input and output to 0, we can restrict to masking-off only the

exponent field of the two values.

All 3 exponential architectures in Table 1 use a FP K′
f pUneval,

and obtain y′ as described in Equation 17. The Arch1 and Arch2

architectures index the K′
f pUneval table with x f xpRed whereas Arch3

indexes the table with an 11-bit string composed of (xsign, xexp[2 :

0], x f rac[22 : 14]).
The next section describes the basic range-reduction technique

for computing ey′ with y′ stored in FP.

5.2 Argument reduction for ey′

5.2.1 The basics

The exponential ey′ with an output in (1/2
√

2,2
√

2) is still too com-

plex to compute directly. The following multiplicative argument

reduction is preformed:

ey′ = eA+B = eAeB. (18)

The goal of this argument reduction is to get B close to 0 so that

the a truncated Taylor series is sufficiently accurate to compute eB

and for eA to be computed via tabulation.

The Taylor series for ex, expanded in x = 0 is:

ex =
∞

∑
n=0

xn

n!
. (19)

With a truncated Taylor series up to n = 2 (3 terms), and x ∈
[0,2−8) the approximation error is:

∣∣∣∣∣e
x −

2

∑
n=0

xn

n!

∣∣∣∣∣< 1.011 ·2−27 (20)

which is sufficiently accurate for a single-precision implementa-

tion.

5.2.2 Proposed argument-reduction implementation

As previously stated, y′ may either be computed in fixed-point or

floating-point. If y′ is computed in fixed-point, then obtaining A

reduces to fetching the most significant 10 bits (2 integer bits, sign

included, and 8 fractional bits) of y′. B is also obtained by selecting

bits having weights ≤ 2−9. The selection of A and B for a fixed-

point y′ is depicted in Figure 8. The Horner datapath may then

use B for a fixed-point implementation, or requires normalizing B

before feeding B f p into a floating-point Horner evaluator.

Since our proposed architecture computes y′ in FP, then A

may be obtained either using an optimized shifter architecture,

or by tabulation. If the architecture for getting A is shifter-based,

then a 9-bit right shifter is sufficient. The magnitude of A is that

of y′, so 1 integer bit is sufficient to represent the largest value

in y′. An exponent value of y′exp = −9 will result in A = 0 (all

bits are shifted out), with eA = 1. The 1+9=10 bits used for A

will then input a table that returns eA directly in floating point.

This architecture requires 2 M20Ks in configuration 1024x20-bits.

Exponential architectures Arch1 and Arch3 in Table 1 make use of

this small right shifter for obtaining A.
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Figure 9. The contents of the mask table used to obtain A in floating-point by

masking the top 8 fraction bits of y′f p

Table eA may also be obtained directly by tabulation, by

feeding the relevant exponent and fraction bits of y′. Unfortunately,

this architectural choice leads to a large table size (address is

12-bits) and since eA is computed outside the critical path, no

latency saving is observed. The exponential architecture Arch2,

which is otherwise similar to Arch1, shows the impact of using

this tabulation.

The value A can easily be obtained in FP by masking certain

bits of the mantissa of y′f p. The LSB 4 bits of the exponent of y′f p,

y′exp are sufficient for indexing the mask table. The mask table is

8-bits wide, and applies to the top fraction bits of y′. The contents

of the mask table are presented in Figure 9.

When the exponent of y′ is less than −8 then exponent bits are

reset, therefore setting A to 0 which makes B = y′f p. Having A in

FP, B is obtained in FP by means of a subtraction:

B = y′f p −A.

All 3 exponential architectures find B by first finding A in FP

using a mask table.

Computing eB is done using a degree 2 Taylor polynomial

evaluated using the Horner’s scheme.

eB = 1+B

(
1+

B

2

)

When evaluating the Horner polynomial in FP, two multiply-

add blocks, each mapping to a single HFP DSP Block are used.

The total latency is 8 cycles for high performance implementation

(4 cycles per block).

Once eB is obtained, ey′ = eA · eB is implemented using a

floating-point multiplier.

A final normalization stage is required before returning the

result since ey′ is ∈ (1/2
√

2,2
√

2). The normalization cases are

explained in Equation 15 and are implemented via trivial mul-

tiplexing.

The generic, simplified architecture of the exponential function

is presented in Figure 10. The presented architecture obtains

K′
f pUneval directly using a lookup with the address from 11-bits

of x (Arch3). Alternative architectures (Arch1 and Arch2) use a

small-size barrel shifter for x f pRed . The depicted architecture also

uses the generic box Find A. The two possibilities include using

a small fixed-point shifter (Arch1 and Arch3), or using a table

lookup driven by some bits of y′ (Arch2). As it will be presented

in the Results section, the small shifter-based architecture provides

a better trade-off in terms of resources.

6 RESULTS AND DISCUSSION

Table 1 presents synthesis results for both the natural logarithm

and the exponential, targeting two HFP-enabled devices: Arria 10
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and Stratix 101. On Arria 10 we show results for the fastest

core device (core speedgrade 1). The results given in Table 1

target the highest achievable performance. Lower latency and logic

utilization can be obtained if targeting a lower frequency.

LAB usage is of particular interest for this work. LABs

are tiles of logic which regroup 10 ALMs. LABs give a better

fitting density scale than counting individual ALMs since some

ALMs can end-up being hard to use (only certain configurations

left available due to pin count constraints) or inefficient to use

(isolated from adjacent logic, usable but would break timing).

Although we won’t only focus on LAB count, we believe that

future benchmarks should include LAB count as it gives a better

core performance indicator in full designs.

For completeness we have compared our proposed cores

against state-of-the art implementations available in the DSP

Builder Advanced tool [33], and the open-source core generator

FloPoCo. We have used Quartus Prime Pro version 16.1, and

FloPoCo version 2.5.0. For the DSP Builder Advanced tool, we

have generated the cores targeting the Arria 10 and Stratix 10

cores, and focused on high performance. Unfortunately FloPoCo

is missing an Arria 10 target. We have used a Stratix V target, and

the generated RTL was synthesized for an Arria 10, fastest core

1. Stratix 10 results are preliminary for both tools and silicon

speedgrade2. Therefore, it is likely that the FloPoCo results are not

optimal as the deeper pipeline of the DSP blocks in Arria 10 as

opposed to Stratix V causes performance bottlenecks around DSP

Blocks.

For the natural logarithm on Arria 10, our proposed architec-

ture consumes both fewer ALMs, fewer LABs, but more DSPs.

The latency of the DSP Builder Advanced implementation is

shorter, for a similar output frequency. Compared to FloPoCo’s

log(x) (which we were unable to push beyond ≈ 225MHz due

to DSP-block related critical paths) our proposed implementation

consumes roughly half the ALMs and LABs at a minor increase

in DSP and M20K count.

The maximum core performance of the Stratix 10 device

is higher than that of Arria 10. Embedded Stratix 10 features

like the DSP and memory blocks are designed to match the

maximum performance. Additional innovations such as the Hy-

perFlex architecture allow achieving maximum core performance

with adequate pipelining of general-purpose logic. Therefore, for

Stratix 10 benchmarking we have focused on high frequency

architectures, ensured the HyperFlex routing architecture is used

for all synthesized cores and tried to adequately pipeline logic.

We have compared our proposed core against the DSP Builder

Advanced log(x) implementation. We have observed that both

cores are capable of reaching very high frequencies: 724MHz for

the proposed core, and 682MHz for the DSP Builder Advanced

logarithm which confirms that our Stratix 10 setup behaves as

expected. The latency of our proposed core is 9 cycles lower

than the DSP Builder Advanced log(x) while also improving:

LAB count – reduced to roughly half – and ALM count at the

expense of some DSP Blocks. The synthesis results for log(x) on

the Stratix 10 confirm the hypothesis that high-frequency instances

will have both lower latency and lower resource requirements than

existing state-of-the-art implementations.

For the exponential on Arria 10 we give the results for the

architecture variations discussed throughout the paper. The first

(Arch1) uses a reduced-width fixed-point shifter for obtaining

x f xpRed , uses another reduced-width fixed-point shifter for obtain-

ing A, and uses a table for fetching eA. The second architecture

(Arch2) uses one table for obtaining eA, and inputs top bits from

the fraction of A together with some exponent bits. The goal of

this architectural change is to reduce latency, and therefore reduce

synchronization overhead which costs logic. However, as it can be

observed from the left of Figure 10 depicting the architecture of

the exponential function, computing eA is outside the critical path.

The large table has an overhead in M20K blocks, and does little

to reduce logic. The third alternative (Arch3) uses one table for

obtaining K′
f pUneval, and the same architecture for computing eA as

the first architecture. Since computing K′
f pUneval is on the critical

path (see Figure 10), a reduction of 3 cycles in latency, combined

with a 32 ALM reduction (5 LABs) is traded for extra 6 M20Ks.

Choosing between the first and the third proposed architecture

is therefore left to the user, and the choice will be application

dependent.

For Stratix 10 synthesis results are only given for the first

architecture, using Hyper-Flex registers, which is the default

flow. Compared to the DSP Builder architectures, the latency

of our proposed cores is longer on Arria 10, and shorter on

Stratix 10 devices. Our proposed core always reduces ALM count,

2. Command-line used: ./flopoco -target=StratixV -frequency=400 FPExp 8
23
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Table 1

Natural Logarithm and Exponential resources on Arria 10, fastest core speedgrade (1) and preliminary results of Stratix 10. For the exponential, the synthesis for

[28] were generated using FloPoCo 2.5.0 targeting 400,500,600 and 700MHz respectively using the Stratix V target. PPA stands for architectures using a

Piecewise-Polynomial Approximation technique.

Func. Reference Target Architecture Lat. Freq. ALMs LAB DSPs FPDSP M20K

Log

Proposed
Arria 10

Full Performance 25 482 302 45 3 6 3
State-of-the art PPA [33] PPA 20 481 418 72 3 0 3

FloPoCo Log [34]
Iterative, unrolled (400MHz*) 20 222 607 98 7 0 2
Iterative, unrolled (500MHz*) 29 223 681 126 7 0 2
Iterative, unrolled (700MHz*) 39 225 856 175 7 0 2

Proposed
Stratix 10

Full Performance w/o HyperFlex Registers 33 545 526 75 3 6 3
High-performance w HyperFlex Registers 34 724 552 85 3 6 3

State-of-the art PPA [33] PPA with HyperFlex Registers 43 682 888 160 3 0 3

Exp

Proposed

Arria 10

Arch1 shifter x f xpRed , shifter A, table eA 34 483 296 49 - 6 3

Arch2 shifter x f xpRed , one table for eA 34 483 295 51 - 6 6

Arch3 table for K′
f pUneval , shifter A, table eA 31 483 264 44 - 6 9

State-of-the art PPA [33]
PPA (MLABs) 19 452 748 112 2 0 0
PPA (M20K) 22 411 632 128 2 0 3

FloPoCo PPA [28]

PPA (400MHz*) 16 213 473 50 1 0 1
PPA (500MHz*) 18 197 496 74 1 0 2
PPA (600MHz*) 23 197 504 82 1 0 2
PPA (700MHz*) 29 358 532 93 1 0 2

Proposed
Stratix 10

Arch1 w HyperFlex Registers 1 36 589 397 59 - 6 3
Arch1 w HyperFlex Registers 2 40 642 435 61 - 6 3
Arch1 w HyperFlex Registers 3 44 658 457 63 - 6 3

State-of-the art PPA [33] PPA (M20K) 41 561 969 147 2 0 3

sometimes by more than twice. The LAB count is improved

from 128 in the case of a DSP Builder Advanced core targeting

M20Ks, to 49 LABs. The differences also hold on Stratix 10,

but frequencies are generally higher. Compared to the FloPoCo

exponential implementation, which we struggled to get to 358MHz

with deep pipelining, our architecture consumes roughly half the

logic (ALMs, LABs) at the expense of some DSPs, while at the

same time running at 230MHz+ more.

Overall, the proposed cores offer high-performance while

generally reducing logic consumption, at the expense of DSP

and M20K Blocks. With Stratix 10 devices requiring higher

levels of pipelining, the proposed architectures based on HFP

usage reduce overall latency while providing a higher-frequency

implementation. The LAB usage, a metric that we believe better

shows the behavior of a core in a full design confirms that our

proposed architectures always outperform the current solutions.

7 FUTURE WORK

This required increase in performance also introduces the need

for computational density benchmarking. One of the motivations

for this work was to be able to fit more functions, with higher

Fmax, together with other sizable designs implemented in both soft

logic, as well as the multiply-accumulate and vector reductions

supported by the HFP DSP features. Full device benchmarks, to

give confidence in expected peak to sustained throughput ratios

not only for the traditional measurement of MAC GFLOPs -

but also for a new benchmark considering the saved overhead of

elementary function implementation - should be considered.

Another area of interest is the scaling of this FP functional

mapping to non-native precisions, such as single extended or even

double precision. Multi-operator implementation of higher pre-

cision arithmetic are used in software, but would be expensive to

unroll into a hardware environment. Analogous to the combination

of bit level and word level techniques used in this work, the ideal

would be to find a way of efficiently using single precision HFP,

along with the flexibility of soft logic, to support other precisions.

8 CONCLUSIONS

In this article we have presented architectures for the single-

precision natural logarithm and exponential, targeting FPGA ar-

chitectures with hardware support for FP addition and multiplica-

tion, such as the Arria 10 and Stratix 10 FPGAs. For both func-

tions, the proposed implementations make efficient use of an entire

mix of resources: the DSP Block in fixed-point arithmetic mode,

memory blocks, logic, and most significantly, the DSP Block in FP

arithmetic mode. The accuracy of both function implementations

is studied using the worst case cancellation values, and is accurate

to 3ulp, the bound required for OpenCL conformance [35], with

subnormals flushed to zero o input and output.

Although timing values for the Stratix 10 device are pre-

liminary, the critical paths of these architectures show that high

frequencies, of over 700MHz, can be expected for upcoming

devices.
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