
High-performance QR Decomposition for FPGAs

Martin Langhammer, Bogdan Pasca

Intel, Programmable Solutions Group

Abstract—QR decomposition (QRD) is of increasing impor-
tance for many current applications, such as wireless and
radar. Data dependencies in known algorithms and approaches,
combined with the data access patterns used in many of these
methods, restrict the achievable performance in software pro-
grammable targets. Some FPGA architectures now incorporate
hard floating-point (HFP) resources, and in combination with
distributed memories, as well as the flexibility of internal con-
nectivity, can support high-performance matrix arithmetic. In
this work, we present the mapping to parallel structures with
inter-vector connectivity of a new QRD algorithm. Based on a
Modified Gram-Schmidt (MGS) algorithm, this new algorithm
has a different loop organization, but the dependent functional
sequences are unchanged, so error analysis and numerical stabil-
ity are unaffected. This work has a theoretical sustained-to-peak
performance close to 100% for large matrices, which is roughly
three times the functional density of the previously best known
implementations. Mapped to an Intel Arria 10 device, we achieve
80us for a 256x256 single precision real matrix, for a 417 GFLOP
equivalent. This corresponds to a 95% sustained to peak ratio,
for the portion of the device used for this work.

I. INTRODUCTION

The nature of FPGA architecture is changing. Originally,

devices contained soft logic and programmable interconnect,

with the majority of the die area devoted to programmability.

Embedded functions started being added, first memory blocks,

followed by hard multipliers, and more recently, floating-point

support. The embedded features have also changed the power

envelope of the FPGA; on one hand the hardened features

allow for much greater functionality, measured either per mm2,

or by functional density. On the other hand, the greater power

density in the ever increasing embedded features has left less

thermal capacity for the traditional functionality within the

typical FPGA package and for environmental constraints.

Contemporary applications therefore need to rely less on

the traditional soft logic for datapath construction and instead

utilize the embedded features. Soft logic will only be used

for assembling datapaths, as well as supplying a resource

for bit-level operations such as state machines and control

logic. Software programmable solutions, such as CPUs and

GPUs, are limited by the data transfer paths of a load-store

architecture. In contrast, FPGAs are hardware programmable

solutions, with flexible and configurable data movements. In

this paper, we will show that we can take advantage of multiple

degrees of freedom in data movement: parallelism as well as

independence in data sources and destinations. For instance,

data can be written back to memory and simultaneously to

another datapath, all without instruction overhead.

We select MGS for the QRD implementation, as it lends

itself readily to be parallelized, as all data accesses are column-

wise. In contrast, Householder QRD requires alternating row

and column accesses. Although Householder QRD exhibits

better stability than MGS, the MGS implementations described

in this paper reduce cumulative rounding errors.

In this paper, we will use sustained to peak performance

as our quantitative measure, which can clearly show com-

putational and algorithm efficiency. This can also scale well

for comparisons with future FPGA and other architectures,

where the resource mix and/or speed changes. As a qualitative

measure, we will also examine resource use - our goal is to

improve efficiency by using the smallest possible amount of

soft logic, and map as much of the design to memories and

DSP Blocks.

II. PREVIOUS WORK

Typically, FPGA implementations of QRD have focused on

small matrices, with relatively low throughputs. Often, logic

intensive approaches such as CORDIC have been employed,

even in recent works. In [1], a 4x4 16-bit fixed-point QRD is

implemented using an unrolled CORDIC approach, requiring

2671 4LUTs and 12 DSP48E of a Xilinx Virtex5 device, with

a clock frequency of 254MHz. The first floating-point (IEEE-

754 single-precision) FPGA QRD was in [2], where a 7x7

systolic array was implemented. This design required 126K

4LUTs, 102 DSP48E Blocks, and 56 BRAMs of a Xilinx

Virtex5 device, achieving a clock rate of 132MHz. Neither

publication explicitly specifies whether the number format is

real or complex, although [3] describes a 4x4 complex QRD

using the SGR (Squared Givens Rotation) method on a custom

floating-point format (6-bit exponent, 14-bit fraction) in an

earlier work.

In [4], a vectorized algorithm was introduced, which was

able to calculate a much larger complex QRD on an FPGA

efficiently. In [5] this QRD was mapped onto an Arria 10

device to take advantage of the floating-point DSP Blocks;

a 200x100 QRD required 423 DSP Blocks and 12K ALMs,

or about 25% of the device. A 78 GFLOP performance was

calculated, which corresponds to 30% sustained to peak of

the consumed resources, at a 300MHz clock rate. From [4],

the QRD requires about 45% of the FLOPs of a simple

STAP radar processing core. As the QRD is a n3 process,

and the other key signal processing components (such as

generating the covariance matrices, finding the interference

covariance matrix, and calculating the steering vectors using

back-substitution) are n2, the QRD will increase as a fraction

of the computational load with increasing system complexity.

Another recent MGS floating-point FPGA implementation

is described in [6]. Although poorly documented, we calculate

that the presented 128x64 matrix requires 1.4GFLOPs at the

stated throughput. From [7], the number of DSP48E blocks

can support 37.6 GFLOPs at the stated frequency, which

corresponds to a 3.7% sustained to peak ratio. Interestingly,

we will see that this is very close to the expected hardware

implementation of the unoptimized canonic MGS.

In [8], the GPU is evaluated for radar signal processing

applications, with particular emphasis on QRD, and higher

level algorithms (STAP) containing QRD. The work explains

that matrix sizes of 200x100 are representative of the com-

plexity for this type of application. The QRD on individual

matrices has a very low performance of a fraction of 1%

sustained to peak, although a STAP system using multiple

parallel iterations of QRD approached 23% sustained to peak;

however, it must be noted that only the R portion of the result

was calculated in this case. In [9], GPU results for QRD

showed 15% sustained to peak performance for matrices of

size 8192x8192, and 25% for larger matrices. Smaller matrices

were not reported, but the steep slope in GFLOPs from the

8K to 9K sizes suggests that smaller matrices performed

poorly. Kerr [10] also reports a 8K matrix QRD throughput of

about 15%, but smaller matrices appear to have a much lower

throughput. These three sources correlate closely; a QRD

algorithm implemented on a GPU may achieve a sustained to

peak of 15% for larger matrices, or carefully organized smaller

matrices, but will show dramatically lower performance for

typical matrix sizes used in embedded applications.

III. ALGORITHM

We will first review the canonic MGS algorithm in order

to highlight the importance of the sequence of operations on

expected throughput. We will then show the best known algo-

rithm for parallel datapaths, which approaches 50% sustained

to peak throughput, and confirm that although the grouping

of operations is different than the canonic MGS, the order

of dependent operations is essentially the same. Finally, the

new MGS algorithm, which trends towards 100% sustained to

peak, will be introduced. The grouping of operations is again

changed, but the order of dependent operations is the same.

The input matrix is A, a n×n-element square matrix formed

out of the column vectors ak,k ∈ {1..n}:

A = [a1|a2|...|an].

We denote by 〈x,y〉 the dot-product xT y, and by |x| the norm

of the column vector x. The L2-norm used in this article is:

|x|= |(x1, ...,xn)
T |=

√

x2
1 + ...+ x2

n

For the purposes of illustration, we will use a 256× 256

matrix as the basis for our discussion. This will allow us to

show the effects of realistic datapath and operator latencies for

current FPGAs in the context of the QRD. In this paper, we

will use the following terminology: a vector operation denotes

a dot-product and a scalar operation denotes a multiply-add

or multiply-subtract.

Algorithm 1: Gram-Schmidt–based QR factorization

1 function QRD (A);
Input : Matrix A (square)

Output: Matrix Q (orthogonal) and R (upper-triangular)

2 for i=1:n do

3 ri,i = |ai|
4 qi = ai/ri,i

5 for j=i+1:n do

6 ri, j = 〈qi,a j〉
7 a j = a j − ri, jqi

A. Canonic MGS Algorithm

The canonic MGS algorithm is shown in Algorithm 1. There

are n outer loop iterations i ∈ {1..n} - in this case, 256. At

the beginning of each iteration (k ∈ {1..n}), the norm of the

column vector ak, is calculated. This can be computed as the

dot-product 〈ak,ak〉, followed by a square root. Both the dot-

product and the square root are long latency operations.

In an FPGA with HFP cores, a 256-length dot-product may

require 25 or more cycles (depending on the target frequency),

with an additional 10 to 20 cycles for the square root, which in

practice is often replaced by the lower latency inverse square

root and a multiply. This creates a data dependency for the

following divide function, which creates a 45-cycle stall before

the following column can be processed.

The following columns j ∈ {i+ 1..n} are processed by the

inner loop. The first operation is a dot-product, followed by

a multiply-subtract. The dot-product again has a relatively

long latency, and creates a data dependency for the multiply-

subtract. In contrast, the multiply-subtract has a relatively short

latency, of typically 5 clock cycles.

Looking at the number of clock cycles required for a

single iteration for mid-algorithm (i = 128), the normalization

calculation requires around 45 cycles, and the following 127

inner loop iterations require 30 cycles each. Clearly, this is

very inefficient, with the sustained to peak ratio in the region

of 3%, based on the amount of time stalled, however, the true

cost can be much higher, if the scalar and vector structures

are on independent datapaths.

B. Improved MGS Algorithm

An improved form of the MGS algorithm is presented in

[4] and rewritten as Algorithm 2. The algorithm loops and

operations are restructured in order to reduce and hide loop-

carried dependencies.

Examining the multiply-add operation a j = a j−ri, jqi (line 7

in Algorithm 1) we can substitute the definitions of ri, j and qi

to make an equivalent calculation:

a j = a j −
〈ai,a j〉
|ai|

ai

|ai|
= a j −

〈ai,a j〉
〈ai,ai〉

ai

The new update equation for a j removes the ri, j and qi, j

computations from the critical path and requires computing

the scalar division rni, j/r2i,i. The rni, j elements are processed

Algorithm 2: QRD improved algorithm (from [4])

1 function QRD (A);
Input : Matrix A (square)

Output: Matrix Q (orthogonal) and R (upper-triangular)

2 for i=1:n do

3 r2i,i = 〈ai,a j〉
4 for j=i+1:n do

5 rni, j = 〈ai,a j〉
6 ri,i =

√

r2i,i

7 qi = ai/ri,i

8 for j=i+1:n do

9 a j = a j − rni, j

r2i,i
ai

10 for j=i+1:n do

11 ri, j =
rni, j

ri,i

in a separate loop (line 5 in Algorithm 2) to that containing the

a j updates. As these elements become available at the output

of the dot-product unit, they feed directly into a second parallel

compute core. This core computes the quotients rni, j/r2i,i and

square-roots
√

r2i,i. When all the ai,a j inputs are fed into the

dot-product unit, and as the first quotient becomes available,

the main compute cores will start processing the a j updates.

After all a j are updated we can proceed to the next outer loop

iteration.

The vector calculation (dot-product and the normalization)

requires different hardware than the multiply-subtract cal-

culation. As all of the vectors for the r calculation must

have been read before the multiply-add begins, typically one

structure will be mostly idle while the other is being utilized.

This results in a maximum sustained-to-peak performance of

roughly 50%.

The architecture proposed in [4] requires parallel transfers

between memories and the datapath cores – the dot-product

and mult-subtract units. The potentially distant geographical

fanout from the memory blocks may limit timing closure and

requires more elaborate pipelining.

C. Proposed MGS Algorithm

In [11] we presented a new loop structure of the MGS

algorithm where the scalar datapath feeds the vector datapath.

This makes near 100% sustained to peak performance possible,

as both datapaths are active at the same time. Additionally, the

memory fanout is reduced to 1 as memories connect directly

to the scalar datapath, and the scalar datapath feeds the vector

datapath in turn.

Algorithm 3 updates [11] with operation mapping consid-

erations. The first part (lines 2-6) still requires the vector

datapath, which is used to calculate the normalization (ir1,1)

and s1, j values for the first pass, using the optimizations of

the improved MGS algorithm described previously. The main

loop (lines 9-19) calculates qi and all of the a j updates (the

multiply-subtract values), and writes these back to memory. At

Algorithm 3: Proposed QRD algorithm

1 function QRD (A);
Input : Matrix A (square)

Output: Matrix Q (orthogonal) and R (upper-triangular)

2 p1,1 = 〈a1,a1〉
3 ir1,1 =

1√
p1,1

/* via the reciprocal square-root */

4 for j=2:n do

5 p1, j = 〈a1,a j〉
6 s1, j =

p1, j

p1,1
/* via the divider */

7 r1, j = p1, j × ir1,1 /* via the multiplier */

8 for i=1:n-1 do

9 qi = ai × iri,i

10 for j=i+1:n do

11 a j = a j − si, jai

12 if j=i+1 then

13 pi+1,i+1 = 〈ai+1,ai+1〉
14 iri+1,i+1 =

1√
pi+1,i+1

15 ri+1,i+1 =
√

pi+1,i+1

16 else

17 pi+1, j = 〈ai+1,a j〉
18 si+1, j =

pi+1, j

pi+1,i+1

19 ri+1, j = pi+1, j × iri+1,i+1

20 qn = an × irn,n

the same time, the iri+1,i+1 and the si+1, j values for the next

loop iteration are calculated from the a j just computed; the

multiply-subtract datapath feeds both the memory write port,

as well as the vector datapath, so that the scalar and vector

datapaths are utilized simultaneously. The first ir in each loop

iteration (line 14) is the normalization value, and is calculated

by the inverse square root of the dot-product of the first vector

written back. For subsequent js the si+1, j values (line 18) are

the quotients resulting from dividing the dot-products pi+1, j

by the pre-computed pi+1,i+1 used for the first ir. The q vector,

which is the first output of each loop, is also calculated using

the scalar datapath; for this case the input to the subtracter is

zeroed.

The pre-loop values (lines 2-6) are also calculated with the

chained scalar and vector datapaths. The scalar datapath is

bypassed, by latching one of the multiplier inputs to zero.

Therefore only one datapath structure is needed, thereby

reducing routing stress, removing the need for a multiplexer,

and simplifying the control logic.

The final pass consists of a single vector division im-

plemented as a multiplication by the inverse. This is again

handled by the scalar structure, similar as for the q calculations

of the previous columns, by zeroing one input of the subtracter.

D. Architecture

Figure 1 shows the architecture of a QRD core implement-

ing the new MGS algorithm. The RAM block is made up of

one memory per column element, so that the entire column

×

√
x

AND

FIFO
RAM

R

Matrix

FIFO

x
y

1√
x

Matrix

A/Q

RAM

iri,i

si, j

ri,i

ri, j

pi,i

pi, j

Figure 1. Proposed MGS Algorithm Architecture

can be accessed in parallel. The first column in an iteration,

ai, is always latched at the input of the multipliers. The other

input of the multipliers is a common input from the math

functions, either the inverse square root for the normalization

of the vector (iri,i, the subtracter is zeroed in this case), or the

divider (si, j), to apply the projection of the first vector onto

the rest. A FIFO, or other delay mechanism, is provided to

align the output of the math functions (which are generated

for the previous iteration) with the vectors a j for the current

iteration. The new a j is written back to the RAM block, and

at the same time is input to the vector datapath.

The vector datapath latches the first vector it receives for an

iteration, which is the normalized ai, or normalized vector, and

calculates the inner product of pi,i = 〈ai,ai〉. This is latched

at the denominator input of the divider, and is also used at

the input of the inverse square root function, to generate the

normalization value for the next iteration iri,i. The first dot-

product pi, j is passed through the square root block in order

to compute ri,i. The output of the inverse square root (iri,i)

is latched at the input of the multiplier. The following vector

outputs, the inner products of pi, j = 〈ai,a j〉, are divided by

the latched value to produce si+1, j, used to calculate the angle

between the first and following vectors for the next pass. At

the same time pi, j values are multiplied by the latched iri,i for

obtaining ri, j.

From Figure 1, it can be seen that for single-precision and

when targeting HFP-enabled FPGAs, most of the functionality

can be mapped to the HFP blocks. All the FP multiplies

and the adders are mapped to the HFP blocks in gray. The

math functions (÷,
√

x,1/
√

x) together with the muxing and

latching logic require small amounts of soft logic resources.

The counting and decoding logic in the controller uses a

relatively negligible amount of logic.

Although the implementation and analysis presented here

is a fully parallel implementation, a multi-cycle version is

also possible. Resource savings would primarily be in the

floating point scalar and vector datapaths, with the elementary

functions unchanged. The number of memory bits is also

constant, with any change in the number of RAM blocks

dependant on the ratio of matrix size to memory size.

IV. PERFORMANCE ANALYSIS

In this section we will estimate the expected sustained to

peak performance of the new MGS algorithm, assuming real-

world implementations. Although the theoretical sustained to

peak performance is close to 100%, pipelining will reduce this

by introducing stalls, as well as a smaller component of initial

pipeline fill. The larger the matrix, the lower the incidence of

stalling.

Although QRD is an n3 process, our implementation will

require n2 steps as we will read an entire column vector per

clock. For a n × n matrix, there will be n iterations, with

the number of columns processed per iteration decreasing by

1 every pass. Ignoring pipelining, QRD therefore takes n2/2

cycles.

The roundtrip through the multiply-subtract core is rela-

tively short, comprising of the registered memory interfaces,

the four or five pipeline stages of the multiply-subtract core,

and a small number of additional registers, such as the mul-

tiplier input latch, and the registered multiplexer (to provide

external read and write access to the RAM) on the input of

the memory. Additional pipelining may be used for fitting

purposes; breaking up long paths for the many floating-point

datapaths can improve the timing closure of complex designs.

Typically, the total delay in the multiply-subtract path will

be less than 10. The scalar roundtrip path will have minimal

impact on system performance, which will be dominated by

the vector and elementary function depth instead, and will

include the scalar outbound (to the output of the subtracter).

Before the next iteration can be started, the angle between the

previously calculated vector and the current vectors must be

available. This will be the sum of the scalar outbound depth,

the vector depth, and the division operator, along with the

various hold latches and pipelines added for fitting. The scalar

outbound depth is close to the scalar roundtrip path, perhaps

8. The vector depth is dependent on the vector size, and in

current devices is several times the scalar path:

vectorDepth = 8+(4+ 3⌈log2(n)⌉)+ 15+ x.

The divider has a latency of about 15, n is the column height

of the matrix, and x represents the additional pipeline depth -

Table I
LATENCY OF THE QRD COMPONENTS FOR VARIOUS CONFIGURATIONS

n, v Type
Latency

div rsqrt scalar vector

64, 64 real 17 11 4 26
128, 128 real 17 11 4 30
256, 256 real 17 11 4 34
384, 384 real 17 11 4 34
512, 512 real 17 11 4 38

this is usually small. For our 256× 256 example, the vector

depth would be in the order of 55 cycles. If the number of

columns in the iteration is greater than the vector depth, then

this latency would be hidden in the processing time of the

iteration, as the result of the vector pipeline is not required

until the iteration is complete.

The QRD implementation would therefore require approx-

imately the following number of cycles:

tQRD =
n

∑
i=1

max(i,vectorDepth)

For our 256× 256 example, this is in the order of 34,025

cycles, compared to the untimed maximum of 32,768, for a

sustained to peak ratio of 96%. The amount of time for the

pre-main loop calculation, which only uses the vector datapath,

is included here as the nth sum; although the scalar datapath

is not used for this first pass through the core, the data still

flows through it.

For smaller matrices, such as 64x64, the latency of the

pipeline is exposed, leading to a lower efficiency, here 64%. A

multi-cycle version (m cycles per column, which will reduce

datapath resources by 1/m) will require the following cycles:

tQRD =
n

∑
i=1

max(m · i,vectorDepth) (1)

Our 64x64 case increases to 8570 from 3570 cycles (2.4x)

but improves system efficiency by about 50%, as the datapath

structures are about 25% the size.

V. RESULTS

Our proposed algorithm is implemented in a core generator

written in C++which takes as input the matrix dimension n,

the target FPGA and the objective frequency. The datapath

structures of our design (the scalar and vector cores), and

the math functions (division and inverse square root), are

generated for the Arria 10 device using the Intel DSPBA [12].

Table I presents the latencies of these compute cores when

targeting the Arria 10 device (-I1), with an objective frequency

set to 400MHz, for IEEE754 single-precision. With increasing

n the vector latency increases roughly with 2 + 4log2(n).
As it can be observed, as n increases from 128 to 512

the latency increases by only 8 cycles for a fully pipelined

implementation.

The synthesis results for this architecture, for both real and

complex versions, are presented in Table II.

are bre aim bim cre cimare bim aim bre

RE IM

Figure 2. Complex Mult-Add Mapping to HFP DSP Blocks

Table II
SYNTHESIS RESULTS FOR VARIOUS SIZE QRD DESIGNS

n, v
Results

Freq. ALMs DSPs M20K

Real

ours

64, 64 461 MHz 4808 135 72

128, 128 445 MHz 11207 265 136

256, 256 430 MHz 22013 526 264

384, 384 388 MHz 32726 787 392

512, 512 371 MHz 43404 1047 520

Complex

ours 32,32 455 MHz 7814 270 76

[5] 32,8 368 MHz 11K 68 31

[5] 32,16 368 MHz 16.9K 118 44

ours 64,64 407 MHz 14826 530 139

[5] 64,8 368 MHz 13.6K 68 75

[5] 64,16 368 MHz 19.5K 118 83

ours 128,128 366 MHz 28865 1050 267

[6] (Figure 7) 128x64,- 150 MHz 7114 LUT 24 DSP48 72 BRAM 18K

[6] (Figure 8) 128x64,- 147 MHz 75900 LUT 392 DSP48 128 BRAM 18K

The complex multiply-add can be optimized to use the HFP

DSP Blocks more effectively, and is depicted in Figure 2.

AB+C = (are + i ·aim)(bre)+ i ·bim)+ (cre + i · cim) (2)

= (arebre − aimbim + cre)+ i · (arebim + arebim + cim)

= (arebre − (aimbim − cre))+ i · (arebim +(arebim + cim))

The complex dot-product is split element-wise into 4 real

dot-products of size n. The final real and imaginary compo-

nents are assembled using an adder and a subtracter. The only

subtlety is the dot-product 〈x,y〉 which requires a conjugate

transpose of x.

The architectures presented in Table II have extra stages of

pipeline on the control and other high-fanout signals. With

increasing n, the physical distance between the placement of

the control FSM and the controlled structures increases. A

variable number of pipeline stages are added (depending on

n) on these control signals. The output of the FIFO also feeds n

mult-add blocks and therefore requires appropriate pipelining.

The extra delays are accounted for at FSM generation time.

Our synthesis results confirm that the pipelining strategy is

effective for obtaining high-frequency, chip-filling designs.

Table III shows how the sustained to peak performance

ratio improves with increasing matrix size. Our proposed

architecture achieves over 95% sustained-to-peak performance

for n= 256, and increases to over 98% for n= 512. The perfor-

mance in GFlops is reported using the frequency numbers from

Table III
SUSTAINED-TO-PEAK AND ABSOLUTE PERFORMANCE

n,v
Datapath Peak Real

Ratio
Perf.

latency Latency Latency (GFlops) µs

Real

ours

64,64 51 2080 3355 61% 71.7 7.27

128,128 55 8256 9741 84% 190.9 21.8

256,256 59 32896 34607 95% 417.8 80.4

384,385 60 73920 75690 97% 577.6 195

512,512 65 131328 133408 98% 744.2 359.5

Complex

ours 32,32 51 528 1888 27% 62.6 4.1

[5] 32,8 - - 13.9 19.4

[5] 32,16 - - 17.6 15.3

ours 64,64 56 2080 3620 57% 237 8.8

[5] 64,8 - - 20.2 105

[5] 64,16 - - 33.8 62.9

ours 128,128 61 8256 10086 81% 606.5 27.5

[6] Fig.7 128x64,- - - 13466627 1% 0.046 89553

[6] Fig.8 128x64,- - - 420163 3.7% 3.6 2852.9

Table II. We can observe that we can achieve over 744 GFlops

while utilizing only 1047 DSPs out of the 1687 DSPs available

in the largest Arria 10 device, or about 62% of the DSPs.

The logic utilization is of 43404 ALMs out of 251680 ALMs,

which is only 17%. Having a comfortable margin on logic

utilization, we expect that frequency can be further improved

by 10-20% for a 10% logic increase.

We have also compared our work against [5] which to

our knowledge is currently the fastest complex FPGA QRD

implementation. The results in [5] have the vector width

always smaller than the matrix size, and are therefore expected

to consume fewer resources, and have a longer latency than

our proposed solution. This holds true for DSPs and memory

blocks, but our solution consumes fewer ALMs.

The algorithmic improvements are also observed when

analyzing latency. For n = 64 our implementation takes 8.8µs

(v = 64) and is expected to take 21.55µs (v = 16) according

to Equation 1. In comparison, the latency reported in [5] for

n = 64, v = 16 is 62µs. This shows that for similar hardware

cost, our implementation is three times faster.

We have added the work in [6] for completeness. The

sustained to peak ratio is about 3.7%, which agrees with the

expectation for an unoptimized MGS mapping. This also illus-

trates the validity of the sustained to peak metric in comparing

matrix decomposition results, as we are able to compare the

quality of an algorithm and implementation independently of

device resources. The Xilinx devices do not have floating

point support, so we expect the soft logic utilization to be

much higher, and we expect that a careful redesign would also

improve frequency, as the individual operators are capable of

about 3x the reported speed in a recent device [7].

VI. CONCLUSION

We have successfully demonstrated a number of contri-

butions. First, our sustained to peak ratios approach 100%

for even medium sized matrices, as commonly used for

embedded applications such as radar. We have shown that

even relatively large matrices, such as 256x256, can close

timing near the maximum possible speed of the device, which

is limited to around 460MHz in floating-point mode. Secondly,

as current FPGA devices contain as many embedded floating-

point functions as their GPU counterparts – in the order of

1TFLOPs on the lower-end to 10 TFLOPs on the higher-

end – the higher efficiency of the FPGA solution (near 100%

compared with a typical GPU ratio of 15% or less) means

that FPGAs offers higher performance matrix decomposition

processing. We have shown an ever increasing improvement

in QRD performance, by careful tuning of the algorithm and

implementation. Our results, in both efficiency (sustained to

peak) and cost (resource utilization) are superior to previous

hardware implementations. Finally, our new designs show low

soft-logic usage (ALMs). The traditional soft logic and routing

resources are used to support the embedded functions, rather

than the typical reverse of this. The soft routing is used for zero

overhead movement of data, for example when the output of

the scalar cores are written back to memory and forward to the

vector core simultaneously. Soft logic, when used, often only

holds a vector constant in time, which both reduces power (as

there is no toggling of the registers) and memory bandwidth,

which further reduces power, as the constant vector is not

continuously read from memory or a register file.

REFERENCES

[1] S. D. Muoz and J. Hormigo, “High-throughput FPGA implementation
of QR decomposition,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 62, no. 9, pp. 861–865, Sept 2015.

[2] X. Wang and M. Leeser, “A truly two-dimensional systolic array FPGA
implementation of QR decomposition,” ACM Trans. Embed. Comput.

Syst., vol. 9, no. 1, pp. 3:1–3:17, Oct. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1596532.1596535

[3] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation of
matrix inversion using QRD-RLS algorithm,” in Conference Record of

the Thirty-Ninth Asilomar Conference onSignals, Systems and Comput-
ers, 2005., October 2005, pp. 1625–1629.

[4] V. Mauer and M. Parker, “Floating point STAP implementation on
FPGAs,” in 2011 IEEE RadarCon (RADAR), May 2011, pp. 901–904.

[5] M. Parker, V. Mauer, and D. Pritsker, “QR decomposition using FP-
GAs,” in 2016 IEEE National Aerospace and Electronics Conference

(NAECON) and Ohio Innovation Summit (OIS), July 2016, pp. 416–
421.

[6] L. Miller, “Adaptive beamforming for radar: Floating-point QRD+WBS
in an FPGA,” Xilinx Whitepaper, Jun. 2014, https://www.xilinx.com/
support/documentation/white papers/wp452-adaptive-beamforming.pdf.

[7] LogiCORE IP CORDIC v6.0, 2012, https://www.xilinx.com/support/
documentation/ip documentation/floating point/v6 0/ds816 floating
point.pdf.

[8] J. Pettersson and I. Wainwright, “Radar signal processing with graphics
processors (GPUs),” in SAAB, 2010.

[9] P. Du, P. Luszczek, S. Tomov, and J. Dongarra, “Soft error resilient QR
factorization for hybrid system with GPGPU,” Journal of Computational
Science, vol. 4, no. 6, pp. 457 – 464, 2013, scalable Algorithms
for Large-Scale Systems Workshop (ScalA2011), Supercomputing
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877750313000161

[10] A. Kerr, D. Campbell, and M. Richards, “QR decomposition on
GPUs,” in Proceedings of 2Nd Workshop on General Purpose

Processing on Graphics Processing Units, ser. GPGPU-2. New
York, NY, USA: ACM, 2009, pp. 71–78. [Online]. Available:
http://doi.acm.org/10.1145/1513895.1513904

[11] M. Langhammer, “QRD for parallel arithmetic structures,” in 2017 IEEE

24th Symposium on Computer Arithmetic (ARITH), July 2017, pp. 146–
147.

[12] “DSP Builder Advanced Blockset,” https://www.altera.com/products/
design-software/model---simulation/dsp-builder/overview.html.

