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Abstract—Machine Learning is now one of the most active
application areas for FPGAs. The more complex recurrent
neural network (RNN) topologies require multiple non-linear
activation functions, mainly tanh and sigmoid, per iteration. In
this paper we will examine the impact of activation function
quality - in both area and (especially) latency - on RNN
performance. We present a number of architectures for these
functions, for both half precision (IEEE754-2008 FP16) and
single precision (IEEE754 FP32) floating-point representations.
We describe how the IEEE754 single precision hard floating
point (HFP) blocks available in current FPGAs ease the
implementation of these functions, and we also give an alternate
method the tanh function based on integer arithmetic. With the
combination of exceptional internal memory bandwidth, direct
support of high performance floating point dot products, and
the new activation functions, we show that FPGAs can be a
highly effective vehicle for these type of neural networks.

Keywords-FPGA; activation functions; hyperbolic tangent;
sigmoid; machine learning;

I. INTRODUCTION

Recursive neural networks such as LSTM typically make

use of two activation functions: the hyperbolic tangent

and the sigmoid. Many applications, especially for training

RNNs, utilize floating point representations - typically single

precision, although increasing half precision, or FP16 -

even though some RNN inferencing is now implemented

with low precision integer values [1]. Naive floating-point

(FP) constructions of these activation functions assemble

primitive operators, using well known identities (Eq. 8 and

Eq. 13) involving other elementary functions; the operators

include the FP exponential [2], [3] and reciprocal or division

functions [4]. There are two main issues with operator

assembly. First, despite efficient individual implementations

of ex and 1/x, the area of the circuit can be high - we

show in this paper that area can be greatly reduced if the

activations function are implemented directly. Secondly, but

more significantly, the two chained operations result in a

long latency - this severely impacts the performance of the

iterative RNN, and is out of proportion to the computational

fraction of the activation functions compared to the dense

matrix-vector multiplies.

This paper introduces several new floating-point architec-

tures for the two activation functions. For tanh we show two

classes of implementations: (a) architectures which are based

on integer arithmetic, for use on devices without dedicated

HFP blocks - Sections IV-A1 and IV-A2 (b) architectures for

Hard FP (HFP) enabled FPGAs (such as the Intel Arria 10

[5] and Stratix 10 [6] devices) - Sections IV-B1 and IV-B2.

For sigmoid we only describe architectures for HFP FPGAs

- Sections V-A and V-B.

This work has two main contributions, each with multiple

sub-parts.

(a) The adaptation of the algorithm from [7] to the hyper-

bolic tangent which includes:

i. tanh specific analysis of the compute range

ii. fixed-point argument decomposition that results in

efficient and accurate architectures, and

iii. an efficient reciprocal computation for this context.

(b) the use of floating-point piecewise polynomial approxi-

mation (PPA) for HFP based architectures, including:

i. use of non-uniform and mixed-segmentation

schemes for half-precision structures

ii. use of odd, degree-5 polynomial for single precision

(SP) tanh that provides a good balance between

DSP and embedded memory (M20K) usage, and

iii. modified polynomial argument generation for the

sigmoid in order avoid catastrophic evaluation er-

rors.

The paper is organized as follows. First, an introduction to

RNN architectures and the impact of activation function

quality will be analyzed in Section II. A short review

of prior activation function results follows in Section III.

The hyperbolic tangent implementation will be presented

in Section IV, for both FP16 and FP32 using integer DSP

Blocks, and then FP16 and FP32 cores using the HFP blocks.

Similarly, the sigmoid function is presented for both FP16

and FP32 cases, in Section V, although only for HFP blocks.

The results for both of these are analyzed in Section VI. We

then finish with the conclusions and references.

II. RNN ARCHITECTURES

A good introduction to RNNs is given in [8], from which

Figure 1 and Equations 1-6 are taken. We will not delve

into the algorithms, but restrict ourselves to the dataflow

within a single iteration. Many iterations are used in an

RNN application. Typically, a single iterative core is reused

multiple times. A new iteration cannot start until the previous

one has completed. In a parallel compute environment such

as an FPGA, the latency through the iteration therefore

has a direct impact on the performance of the RNN. By



tanhσ σ σ

ct−1

ft it
c′t

ot

ct

htht−1

xt

tanh

Figure 1. RNN node

inspection, almost every path contains an activation function.

The equations 1-6 describe the operation at each node, and

can be expanded out to Equation 7 to analyze the critical

path through the core.

ft = σ(Wf [ht−1,xt ]+ b f ) (1)

it = σ(Wf [ht−1,xt ]+ b f i) (2)

c′t = tanh(Wc[ht−1,xt ]+ bc) (3)

ot = σ(Wo[ht−1,xt ]+ bo) (4)

ct = ft × ct−1 + it× (5)

ht = ot × tanh(ct) (6)

ht = ot × tanh( ft × ct−1 + it × tanh(Wc[ht−1,xt ]+ bc)) (7)

We can see that the critical path contains one matrix-vector

multiply, and two activation functions. From [9], the core

of a matrix-vector multiply (a dot product) can be directly

implemented in an FPGA with HFP capability. For an

example vector dimension of 64, the latency of the dot

product core is only around 20 cycles. If the activation

functions are constructed by operator assembly [3], we can

see that the combination of multiple operators will result in

a latency many times greater than the dot product. From [3]

we can see that a typical operator may contain 6 HFP blocks;

the assembly of multiple operators will therefore still only

contain a handful of HFP blocks, however, the latency of the

activation function will be much greater than the much larger

(in the number of computational terms) matrix-vector block.

The latency of the two activation functions will therefore

dominate the path through the core. This imbalance will

give a powerful incentive to optimize the implementation of

the activation functions.

To give a simple illustration, assume that the activation

function via operator assembly has a latency of 50 cycles,

and the matrix-vector dot product has a latency of 20 cycles.

The two chained activation functions therefore contribute

almost 80% of the latency of the core (there are some ad-

ditional multipliers and adders in equation 7). Reducing the

activation function latency by one half through developing a

direct implementation of the tanh and sigmoid will therefore

almost half the latency of each iteration.

III. RELATED WORK

There is very little work on the implementation of these

activation functions in floating-point for FPGA architectures.

In [10] a kernel processor is used to iteratively compute

the values of the two functions. No details are given on

how the two functions are broken down into instructions,

or how the instructions are scheduled. In [11] an iterative

architecture based on an expanded McLaurin series for the

exponential is presented. The system comprises a FP adder,

multiplier and divider together with a handcrafted FSM that

allows computing either of the two functions. CORDIC-

based activation function implementations are shown in [12]

for 32 and 64-bit fixed point. No frequency or latency

numbers are given, and it is not clear if the presented

synthesis results are for 32 or 64-bits. In [13] Zhang presents

synthesis results for a SP FP implementation of the sigmoid

function.

IV. HYPERBOLIC TANGENT

The hyperbolic tangent is defined by the identity shown

in Eq. 8.

tanh(x) =
e2x − 1

e2x + 1
= 1−

2

e2x + 1
(8)

Taylor’s series for tanh in zero is tanh(x) = x− 1/3 · x3 +
2/15 ·x5− .... For a FP implementation, a good approximation

is tanh(x) = x for |x|< 2−⌈wF
2 ⌉ - here wF is the FP fraction

width, with single-precision (SP) having wF = 23 and half-

precision (HP) having wF = 10. We use this approximation

for SP as |x|< 2−12, and for HP as |x|< 2−5.

The hyperbolic tangent is symmetric with respect to the

origin tanh(−x) = − tanh(x). For our implementation, we

focus only on the positive interval, and reconstruct the

negative range results by matching input and output signs.

From Eq. 8 we see that as 2
e2x+1

becomes smaller than

1/2ulp of 1, the subtraction returns 1. Here ulp stands for

unit in last place, or in other words the weight of the LSB

of the floating-point result [14].

2

e2x + 1
< 2−wF−1 → x >

log(2wF+2 − 1)

2
(9)

We conclude that the hyperbolic tangent has a restricted

input range for which the output varies. The bound given

in Eq. 9 ensures an approximation with 1/2ulp accuracy.

The compute interval can be further reduced by relaxing the

bounds in this equation. Below we have a number of bounds

for x:

precision <1/2ulp <1ulp <2ulp

half (wF=10) 4.15 3.81 3.46

single (wF=23) 8.66 8.31 7.87

The following identity allows performing an additive

range reduction over the argument of the hyperbolic tangent.

A similar identity holds for the tangent, but the denominator

shows a negative sign.

tanh(a+ b) =
tanh(a)+ tanh(b)

1+ tanh(a) tanh(b)
(10)
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Figure 2. Half-precision tanh(x) architecture

A. Integer DSP Blocks Only

We present an implementation that extends the techniques

described in [7] to the hyperbolic tangent.

1) Half Precision: We approximate tanh(x)≈ x for small

values, |x|< 2−4; the largest relative error for this approxi-

mation is approximately 1.25ulp when |x| ≈ 2−4. For |x| ≥ 4

we approximate the function by the FP value sX ·1HP, with

a worst-case relative error less than 1ulp.

The compute range is reduced to the interval [2−4,4). An

unsigned fixed-point format having width 16 and fraction 14

allows for a lossless representation of the HP values in this

range. The alignment shifter will only shift by a maximum of

5 positions; inputs requiring right shifting beyond this value

are handled by the two previously described branches. We

use the additive range reduction from Eq. 10 with the values

a and b selected as follows:

ba

21 2−4 2−14

The numerator tanh(a) + tanh(b) can be approximated by

tanh(a)+ b+ t. Here t is a 3-bit approximation of −b3/3

obtained by table lookup indexed by the 6 MSBs of b.

We use tilde variables for the approximations. The 16-

bit value tanh(a) is obtained by tabulation; the largest

approximation error is less than 2−17. The error in term t has

two components: (i) the initial truncation error (truncating b

to its 6 MSBs) which has a low weight of ≈ 2−32, and (ii)

the rounding error for storing this result on 3 bits; this error

will be 2−17. The sum of the three errors is loosely bounded

by 2−16 which gives the total approximation and evaluation

error for the numerator.
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Figure 3. Single-precision tanh(x) architecture

The denominator is approximated by 1+ b tanh(a). The

approximation error is largest when a = 11.11112 and

b = 00.0000111112, and is of the order 2−15. Truncating

b tanh(a) at weight -10 we are left with an approximation of

the denominator accurate within 2−10+2−15. Since the MSB

of term b tanh(a) is of the order 2−5, we can use the 6 bits

of b tanh(a) to index a table for the fixed-point reciprocal.

The table will store a 13-bit result with a 12-bit fraction.

The product of num× recip(denom) is then normalized

and the result exponent is created. The leading zero counter

will only check the most significant 6 bits of the product,

and the normalization shifter size is reduced since it may

only left-shift by at most 6 positions. The full architecture

is depicted in Figure 2 and the fixed-point alignments used

for computing the numerator and denominator are shown on

the left.

2) Single Precision: For SP we approximate tanh(x)≈ x

for |x|< 2−11, and tanh(x) = 1 for |x| ≥ 8. The approxima-

tion error is largest for |x| ≈ 8 and is less than 2ulp. For

x ∈ [2−11,8) an unsigned fixed-point format having width

37 and fraction 34 allows representing the SP FP values in

this range without any accuracy loss.

We apply the following range reduction:

tanh(a+ b+ c) =
tanh(a)+ tanh(b)+tanh(c)

1+tanh(b) tanh(c)

1+ tanh(a) tanh(b)+tanh(c)
1+tanh(b) tanh(c)

(11)



We choose a,b,c which allow us to simplify Eq. 11:

a

22

b

2−172−7 2−34

c

The weights of b and c allows us to approximate the

denominator 1+ tanh(b) tanh(c) by 1. The largest value for

the product tanh(b) tanh(c) occurs for the all ones mantissa

aligned on b and c; in this case the product has weight less

than 2−24. Additionally, the range of c ∈ [2−17 − 2−34,0]
allows for approximating tanh(c)≈ c. Consequently Eq. 11

becomes:

tanh(a+ b+ c) =
tanh(a)+ tanh(b)+ c

1+ tanh(a)(tanh(b)+ c)
(12)

This equation is to be implemented as a product between

the numerator and the reciprocal of the denominator. The

size of the reciprocal can be reduced by observing that the

ranges of the multiplication terms: tanh(b)+c∈ [0,2−7) and

tanh(a) ∈ [0,1] leads to the product belonging to [0,2−7).
The reciprocal is therefore computed for 1/1+y with y ∈
[0,2−7) and a 26-bit accurate output.

The 37 bit fixed-point representation of the input is

obtained using a barrel shifter with a max-shift value of 15.

Beyond this shift value the function returns x. The values

tanh(a) and tanh(b) are obtained by tabulation; tanh(a) is

stored on 34 bits (all fractional) and tanh(b) is stored on 27

bits, 34-bit fraction.

The numerator is obtained by summing the 3 fixed-point

values; the format of the sum is 35 bits, 34 fractional. For

the denominator we only need to focus on the right-hand

term (tanh(a)(tanh(b)+ c)) as only this value will be used

by the custom reciprocal unit. Since we will only use the

top 16 bits of the product, we truncate the inputs in order

to reduce multiplier count. We select the top 18 bits of the

tabulated value tanh(a) together with the top 18 bits of the

sum tanh(b)+ c. Our custom reciprocal unit will input 16

bits and will output 26 bits. We use a piecewise polynomial

approximation (PPA) implementation that requires a degree

1 polynomial; the number of subintervals is 64 and the

multiplication size is 11× 15.

A coarse-grain normalization of the numerator is per-

formed before the final multiplication. The maximum left

shift is 12 positions. The multiplication fits well in one

27× 27 multiplier. A final fine-grain alignment (by at most

one binary position) is required for packing the FP result.

The full architecture and the fixed-point alignments are

shown in Figure 3.

B. Hard FP DSP Blocks

A new set of implementations are possible on target

devices that contain HFP DSP Block support. We now de-

scribe HP and SP architectures based on piecewise floating-

point polynomial approximations (FP PPA). We obtain our

polynomials using the Sollya tool [15] by means of the
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fpminimax procedure [16]. The approximation error is eval-

uated on each interval using the infnorm function [17].

The evaluation error is computed using Gappa [18] on each

subinterval.

1) Half-Precision: We implement the function on the

interval [0,≈ 3.81]. For values larger than ≈ 3.81 we re-

turn 1. For values smaller than 2−5 we return the input.

We reconstruct the results for the negative input range by

appending the input sign to the result.

The input interval, extended to [0,4) is split into 64

subintervals. On each subinterval a degree 1 polynomial

having single-precision coefficients is used to approximate

tanh. The approximation error is plotted using solid lines

in Figure 4. It can be observed that the approximation

error is significantly better as we approach the right of the

approximation interval. We can reduce the number of stored

coefficients by using a non-uniform segmentation scheme; as



long as the complexity associated with the interval decoding

is low, this scheme can reduce ALM count. In Figure 4 the

approximation error and the interval sizes for a non-uniform

segmentation scheme are plotted. It can be observed that the

number of subintervals used on the right side of the input

interval is reduced. Overall, the number of subintervals is

decreased to 30; the cost of decoding the subinterval index

is a 5-bit LUT6 table lookup.

Since the HFP Block allows for single-precision multiply-

add, we store the polynomial coefficients in SP format. Only

the upper 13 mantissa bits are explicitly stored, with the

remainder zero padded the at the output of the tables. This

nearly halves the ALM table count, but the impact on the

approximation accuracy is minor.

The architecture is depicted in Figure 5. A small barrel

shifter is used to create a 6-bit fixed-point value that identi-

fies 64-subintervals. The decode table maps the 6-bit fixed-

point to a 5-bit fixed-point value that identifies the table

address storing the coefficients for the non-uniform intervals.

The HP input is cast to SP by adjusting its exponent bias

offset (adding 127-15) and padding the fraction with 13

zeros. The coefficient tables only output a 13-bit fraction.

Consequently, at the output of these tables the coefficients

have their fractions zero extended to the right before feeding

these into the polynomial evaluator. The evaluation is then

mapped directly on the Hard FP DSP Block Mult-Add pair.

The output of the evaluation is in SP and needs to be

cast back to HP. This is done by adjusting the exponent

(subtracting the bias offset 112) and truncating the fraction

to 10 bits. The accuracy can be improved at this stage by

rounding the SP mantissa to the nearest HP mantissa, which

may involve an exponent update. The input sign is then

added to this half-precision output value.

Finally, a multiplexer selects between the implementation

branches. For exponent values larger or equal to 2 we

return sx × 1.0. The branch that returns x if input < 2−5

is fused with the polynomial approximation; one extra set

of polynomials (C1=1, C0=0) is stored for the case the 6-bit

input is all zeros. The exact details are omitted from Figure 5

for clarity.

2) Single-Precision: The SP architecture is centered

around a degree-5 odd FP PPA. For inputs larger than 8 we

approximate the function with the value 1. For inputs smaller

than 2−12 we return the input. The degree-5 polynomial is

evaluated as follows:

P(x) = x(c1 + x2(c3 + x2c5))

For a sufficiently accurate approximation, the interval [0,8)
is split in 512 subintervals. The approximation error is de-

picted in Figure 6 for segmentations with both 512 and 256

subintervals. The maximum approximation error is between
1/4ulp and 1/8ulp for 512 subintervals. For 256 subinter-

vals the maximum approximation error is approximatively

1.5ulp.
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The interval index is obtained by converting the input to

a 9-bit fixed-point value having 3 integer and 6 fractional

bits; this is accomplished by feeding the top 9 input mantissa

bits to a small barrel shifter with the shift value set to 2+
bias−eX . The 9-bit address is used to fetch the 3 polynomial

coefficients that are each stored into a memory block (the

M20K block allows storing 512 coefficients of up to 40 bits).

The single-precision architecture is depicted in Figure 7.

The coefficients map directly to M20K blocks; the polyno-

mial evaluation maps onto 4 DSP blocks: one used for the

initial squaring operation, two in mult-add mode, and the

final one in stand-alone multiplier mode.

V. SIGMOID

The sigmoid function is defined by the identity of Eq. 13.

sigmoid(x) =
1

1+ e−x
(13)

Similar to tanh, as x increases x > xmax is a good approxi-

mation for sigmoid is 1; as x decreases, say x < xmin, a good



approximation for the returned result is 0. Consequently, the

compute branch for the sigmoid will need to return values

for the range [xmin,xmax].
In a typical FP implementation |xmin| 6= |xmax| since the

density of FP values close to 0 allows for more output values

to be represented before the output saturates to 0. However,

the architectures proposed in this work will use a symmetric

compute range [−xmax,xmax] and we therefore approximate

the sigmoid with 0 in the range [xmin,−xmax).
The bound xmax is the first value for which the function

returns 1; the denominator 1+e−x will therefore need to be

1, or in other words e−x will need to be shifted out when be-

ing added to 1, which leads to the inequality e−x < 2−wF−1.

Therefore, for x > (wF + 1)log(2) the sigmoid function

returns 1 with an accuracy of 1/2ulp. The bound may be

relaxed so to aim for an accuracy or 1ulp around the value

xmax. The HP and SP bounds for xmax are listed below.

precision < 1/2ulp < 1ulp

half (wF=10) 7.62 6.93

single (wF=23) 16.63 15.94

We can focus the implementation to the negative range

(−xmin,0] and reconstruct the result for the positive range

using the following identity:

f (x) = 1− f (−x) (14)

Selecting the reconstruction starting from the negative range

is crucial for maintaining accuracy. Conversely, if recon-

struction is done starting from the positive range, the accu-

racy on the negative (reconstructed) range varies from wF

bits for x close to 0 down to 1 bit for x close to −xmax.

Alternatively, one can evaluate the positive range in parallel

for reduced latency.

A. Half-precision

A FP PPA can be used for the negative range (−8,0].
With 64 subintervals and a degree-1 polynomial the approx-

imation error is bounded by 1.25ulp. The reconstruction

of the result for the positive range is accomplished using

one floating-point subtracter. The architecture is depicted

in Figure 8(a) and corresponds to the (sub) architecture in

Table I.

The latency of this first proposed architecture is dominated

by the chaining of the 2 FP DSPs. This latency may be

reduced by evaluating in parallel both the positive and

negative ranges. The total number of DSPs is still 2, as a

multiply-add costs as much as the subtracter. This architec-

ture corresponds to the eval both unif entry in Table I. The

latency is reduced from 8 cycles down to 5 cycles.

The two evaluation datapaths (for the positive and neg-

ative ranges) can be fused in order to reduce the number

of DSPs down to 1. Additionally, a non-uniform segmenta-

tion for the positive range allows reducing the number of

subintervals used to 14 with an approximation error of less
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Figure 8. HP sigmoid(x) architecture using Hard FP DSP Blocks

than 1ulp. The decode table outputs the 4 bits required for

indexing the positive range tables. Multiplexers driven by

the sign bit make the selection between the negative and

positive-range coefficients. This architecture is depicted in

Figure 8(b) and corresponds to line eval fused non-unif in

Table I.

B. Single-Precision

The intuition is to use the same type of PPA as for the HP

implementation. For single-precision the interval of interest

is (−16,0] as the function values for the positive range get

reconstructed starting from these (Eq. 14). Let Pi be the

corresponding polynomial that approximates the function

sigmoid(x) for x ∈ [Li,Ri]. A good bound on the approxima-

tion error can be obtained using either Minimax or Taylor

degree 3 polynomials and 256 subintervals. Unfortunately,

evaluating the Pi polynomials using SP arithmetic results in

very low accuracies.

The wide discrepancy between the approximation and

evaluation error is plotted in Figure 9 for the degree 3 Taylor

approximation (plotted only on the interval (−8,0]); here

the y axis plots − log2(max(Erel)) for each subinterval and

corresponds intuitively to the accuracy in binary digits of

the plotted approximations. The solid red line shows the

approximation error which is translates into approximately
1/4ulp maximum error. The dashed green lines (the cloud on

the bottom right of the figure) show the sum of approxima-

tion and evaluation error for each these Taylor polynomials;

this is much worse than the approximation error alone and
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Figure 9. SP PPA approximation and evaluation errors for sigmoid(x)

translates into a worst-case accuracy of roughly 16 bits on

the depicted range.

In order to improve the overall accuracy we modify the

function to be evaluated by each polynomial. For each

subinterval [Li,Ri] the function sigmoid(x) is approximated

by a polynomial Pi(y) where y = x−Li, and y ∈ [0,Ri−Li].
The argument change on the input of Pi results in a very

tight evaluation error. For obtaining a result within 4 ULPs,

an degree 2 Minimax approximation using 512 subintervals

is sufficient.

The architecture requires a FP subtracter for computing

the new input argument for the polynomials Pi(y). The

right operand of the subtraction Li is the left bound for

each approximation subinterval, stored as a float. The values

Li are tabulated and stored similarly to the coefficients

C0,C1,C2. This design would require four M20K blocks, one

for each: C0,C1,C2,Li. This count can be reduced to three

blocks by first observing that Li has 15 trailing zeros, and

1 leading one; the 32-bit float can be created by padding

these to the tabulated 16-bits for Li. Also, the C1,C2 and Li

tables can be fused; the total width is (32+32+16)=80 which

is exactly the width of two M20Ks in 512x40-bit mode. The

full architecture is depicted in Figure 10.

VI. RESULTS

Table I presents the synthesis results for our proposed

architectures. We have selected the Stratix V family for

the integer arithmetic only target, and the Arria 10 devices

for the HFP case. The synthesis results have been obtained

using Quartus Prime Standard Edition 17.1 for the Stratix V

devices, and Quartus Prime Pro Edition 17.1 for Arria 10

devices. Both devices have been selected with the fastest

core speedgrade (-1). We have pipelined our presented

architectures for expected maximum device frequencies; a

smaller area and a lower latency can be obtained at the

expense of reduced performance if the system application

warrants it.

First, we have compared our implementations against

operator-assembly-based floating-point architectures. To our

knowledge, the most efficient cores targeting Intel FPGAs
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Figure 10. SP sigmoid(x) architecture using Hard FP DSP Blocks

are available from the DSP Builder Advanced toolbox [19].

We have therefore used this Simulink-based flow to archi-

tect the operator assembly examples for the two functions.

As expected, our new architectures are significantly more

efficient.

We have also compared our work with the few cores

found in the literature. [12] presents results for a 64-bit

fixed-point with a 42-bit fraction. For tanh their reported

maximum approximation error (absolute) is 1.695e-7 (or

≈ 2−23) which makes it comparable to our single-precision

implementation. Their core not only uses more logic but

also consumes significantly more DSP resources. The same

conclusion holds for the sigmoid function but their reported

maximum absolute approximation error is now improved to

9.97e-11 (or ≈ 2−34). This is expected since their fraction

length is 42-bit, meaning that in the worst-case the 8 trailing

bits of the result will be invalid.

In the case of sigmoid [13] describes an multiplier-based

architecture, for single-precision. The reported results show

a much higher LUT and DSP count than in our presented

implementations.

VII. CONCLUSIONS

By analyzing the performance of RNNs, we have shown

the need for efficient, high performance - but at the same

time, low latency - activation functions. We have presented

a number of new architectures for the tanh and sigmoid

functions. On FPGA devices with integer arithmetic only, the

presented architectures for tanh significantly lower resource



Table I
RESOURCE UTILIZATION AND PERFORMANCE FOR THE PROPOSED ARCHITECTURES

Function Precision Arch. Target Lat.@ Freq. Resources

tanh

HP
Prop. No Hard FP DSP

Stratix V
9 @ 549MHz 97 ALMs, 1 DSP, 0 M20Ks

Assembly ex,÷,+ 32 @ 504MHz 559 ALMs, 2 DSP, 0 M20Ks
Prop. Hard FP DSP Arria 10 5 @ 483MHz 54 ALMs, 1 DSP, 0 M20Ks

SP
Prop. NoHardDSP

Stratix V
17 @ 430MHz 348 ALMs, 2 DSP, 4 M20Ks

Assembly ex,÷,+ 47 @ 451MHz 770 ALMs, 6 DSP, 12 M20Ks
Hard FP DSP Arria 10 18 @ 483MHz 177 ALMs, 4 DSP, 3 M20Ks

64-bit fxp, 42-bit fraction [12] Virtex 5 ? @ ? MHz 1687 LUTs, 34 DSP

sigmoid

HP
Hard FP DSP (sub)

Arria 10
8 @ 483MHz 80 ALMs, 2 DSP, 0 M20Ks

Hard FP DSP (eval both unif) 5 @ 483MHz 78 ALMs, 2 DSP, 0 M20Ks
Hard FP DSP (eval fused non-unif) 5 @ 483MHz 93 ALMs, 1 DSP, 0 M20Ks

SP
Hard FP DSP Arria 10 22 @ 483MHz 222 ALMs, 4 DSP, 3 M20Ks
[13] Zed7020 ? @ ≈18MHz 2018 LUTs, 21 DSP, 1 RAM

64-bit fxp, 42-bit fraction [12] Virtex 5 ? @ ? MHz 1388 LUTs, 22 DSP

utilization and latency compared to operator-assembly-based

architectures. On devices with embedded HFP, we have

shown further optimizations on resources and latency.

Numeric accuracy is important. While not performing a

formal error analysis, we have verified the approximation er-

rors of the FPMinimax polynomials generated by the Sollya

tool with infnorm functions. We have also checked the

evaluation error using the Gappa tool. This was particularly

important as we have observed a very wide gap between the

two errors for the sigmoid approximation.
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