
Hybrid dot-product design for FP-enabled FPGAs
Bogdan Pasca

Programmable Solutions Group
Intel Corporation

France
bogdan.pasca@intel.com

I. INTRODUCTION

Machine learning (ML) is a high-profile application area for
FPGAs. While initially FPGAs were only used as inference
accelerators - novel research on using smaller precisions for
training neural networks have allowed FPGAs to broaden their
applicability to accelerating neural network training. Many
training algorithms are composed of forward and back propa-
gations through the network - with each step requiring many
matrix-matrix multiplications. Current research focuses on the
use the bfloat16 [1] format for the dot-product multiplications,
while the reduction operation is implemented using single-
precision (SP) arithmetic. The bfloat16 format is an IEEE-754-
like 16-bit format having 8 exponent bits and 7 fraction bits.
The interest of using this format on the dot-product entries,
as opposed to using SP, is the 2x bandwidth usage - 16 vs
32-bits.

Modern FPGAs have hardened support for SP arithmetic
[2], [3] in the DSP Blocks. Each DSP Block implements
a multiply-add structure and inter-block routing allows for
efficient implementation of dot-products - requiring minimal
logic resources. The SP multipliers can act-down as bfloat16
multipliers which allows for a trivial dot-product mapping
on the DSP-Block columns [4]. In the absence of bandwidth
constraints, the bfloat16+SP dot-product compute density of a
device will be directly dependent on total DSP Block count.

In this work we discuss one alternative for increasing the
dot-product compute density by using a hybrid dot-product.
The top-level diagram is shown in Figure 1. The hybrid dot-
product combines DSP Blocks configured in FP mode (right)
with a more traditional logic and fixed-point DSP-based dot-
product (left). It increases the compute density of the device
by generating a customized core that has a logic-to-DSP ratio
close to that of the target device (or target deployment region).

II. HYBRID DOT PRODUCT

Modern FPGAs have varying ratios of DSPs and logic
elements - that we denote for simplicity by rALM to DSP. Our
goal is to generate a dot-product implementation that has a
logic to DSP ratio (rdot) less than or equal to rALM to DSP, and
that provides a high system compute density (total number of
multiplications).

The first step is to determine a splitting of n (the size of
the dot-product) into α and β such that n = α + β. The
α-element dot product will be implemented using a more

dot−prodct

soft−logic 

of the dot−product

hard FP part

α

A1..α

β

P

ACC

βα

Pb

Bα+1..α+βB1..α Aα+1..α+β

Pl

Pg

Fig. 1. Hybrid dot-product structure

traditional approach, while the β-element dot product will be
using the DSP Blocks in FP mode.

Given a valid splitting, the total number of DSP Blocks
used by the dot product is CDSP = α/4 + β. One DSP
Block implements either 4-bfloat16 multiplications or 1 SP
multiplication.

A user-visible knob w controls the accuracy of the dot-
product by controlling the internal datapath size of the α-
element logic-based dot-product Pl. We use a resource model
for each component to estimate the number of logic elements
of for an α-element dot-product.

A. Hard FP

The Hard FP part of the dot-product incorporates the
addition of the SP input ACC, used when assembling the
final result of wider dot-products. In order to accommodate
for the addition without using an additional DSP Block, the
Hard FP part of the dot-product is split into two sub dot-
products: Pg (green in Figures 1 and 2) and Pb (blue); the
ACC value is added to Pb. The dot-product result Pg merges
with the soft-logic adder tree, to produce the result Pl. One
carefully selected spare SP FP adder (in a used DSP) produces
P = Pl+Pb. An example mapping of the hard FP part of the
dot-product, for β = 4, βg = 2, βb = 2 is given in Figure 2
(color code matches Figure 1).

B. Soft FP

The α-element dot-product is fused - as opposed to being
assembled out of IEEE-754 like operators. Two 8x8 mantissa
multipliers (required for the bfloat16 multipliers) are mapped
to a single 18x18-bit multiplier (half-DSP) and some logic
[5]. The normalization stage is skipped, thus saving one mul-
tiplexer level. Rounding-to-nearest, which requires an addition
that potentially updates the exponent, is replaced by rounding
towards zero on a user-defined w-bit wide fraction. The local



ACCA3 B3Pl
3232 3232 32323232

32 32

A2 B2

32

A
3B

3+
A

C
C

A
2B

2+
(A

3B
3+

A
C

C
)

B1A1A0 B0

32 32

32 32

32

A0B0+A1B1Pg

Pb

P

Fig. 2. Hard-FP part of the hybrid dot-product

TABLE I
RELATIVE ERROR COMPARISON BETWEEN THE PROPOSED HYBRID

DOT-PRODUCT AND A TYPICAL AI BFLOAT16+SP IMPLEMENTATION FOR
n = 16, α = 8, β = 4, βg = 2, βb = 2

Config Param Proposed AI

ec = 0, es = 5
w = 7 1.287601e-02

4.570449e-03w = 8 6.172194e-03
w = 9 2.935275e-03

ec = 0, es = 10
w = 7 7.934867e-03

3.402314e-03w = 8 4.120781e-03
w = 9 1.864206e-03

ec = 0, es = 20
w = 7 6.672454e-03

2.996574e-03w = 8 3.161355e-03
w = 9 1.588372e-03

overflow-underflow at the level of the multipliers is handled
using an extended exponent. The behavior of the adders in
the adder tree is similar, with the exception that the returned
mantissa is in two’s complement. Each adder level extends the
input mantissa by 2 bits: one to capture a potential overflow,
and another to compensate for rounding-towards-zero. The
hard FP Pg merges in the adder tree. At the merge point the
most accuracy is kept for Pg during the conversion to the
internal adder format. The output of the soft FP adder tree
passes through a normalization stage and keeps the maximum
amount of accuracy before populating the SP operand, Pl.

C. Accuracy

The accuracy of the custom implementation of the hybrid
dot product and be adjusted accordingly using the w parameter.
We give in Table I an average accuracy comparison between
the dot-product implementation using bfloat16 for multiplica-
tions and SP for the addition tree and our proposed hybrid
implementation for different values of the w parameter. It can
be observed that the parameter offers the flexibility required
to match the average accuracy of the typical bfloat16+SP
implementation.

D. Density

Stratix 10 devices are currently the largest produced by Intel
[3] and make good candidates for neural network training
accelerators. Within the Stratix 10 device family, there are
multiple combinations of DSP blocks and logic: for instance
Stratix 10-MX rALM to DSP = 177 and Stratix 10-GX has
rALM to DSP = 161. The logic/DSP ratio for our architectures
can be changed by modifying the splitting between n = α+β,

TABLE II
RESOURCE UTILIZATION RATIOS FOR TWO CONFIGURATIONS

Config Param ALMs DSPs rdot

n = 16 w = 7 1030
7

147
α = 12, β = 4 w = 8 1075 153
βg = 2, βb = 2 w = 9 1141 163

n = 16 w = 7 863
8.5

102
α = 10, β = 6 w = 8 894 106
βg = 4, βb = 2 w = 9 948 112

and by changing the value of the parameter w. Both changes
also influence the accuracy of the solution: a large β may
compensate for a smaller w. Table II shows the changes in
the resource utilization ratio by changing both w and the ratio
between α and β.

III. CONCLUSION

The implementation of a seemingly simple dot-product
operator exposes numerous potential tradeoffs for the user,
from operator-specific to more general: (1) Particular reduction
tree; was this operator inferred from an HLS design? Can the
iterative accumulation nature be relaxed? (2) Accuracy; How
is accuracy defined for your design? Do you care more about
worst case or average accuracy? Relative or absolute? Can
the implementation be validated with typical application data?
Does it make sense to use system-level accuracy tests such
as classification accuracy (for neural networks), or SNR (for
filters)? (3) Ratio of resources; What is my exact deployment
target, Stratix 10 or Arria 10? Is the core replicated thousands
of times or only a few times per design? (4) Integration? Do
all inputs need to be synchronized or can the top-level entity
handle the synchronization? What are my available resources
after the system plumbing is in place? (5) Design/Portability?
What tools do we use to describe it (or parts or it)? How close
to handwritten RTL (using low-level primitives) can HLS tools
quality-of-results get? (6) Routability - how much of the local
routing does my IP require?

The many tradeoffs make this type of core an excellent
candidate for a arithmetic generator. Numerous switches allow
modifying the ratio between α, β, and w depending on
the exact deployment target, and accuracy criteria. Pipelining
the design for a user-defined frequency can be automatized
[6], [7], and even scheduling inputs at different cycles to
further save area can be integrated. The challenging aspect
that remains is choosing the level at which this generator
operates: the higher the level the more high-level optimization
opportunities (constant propagation, pruning etc.) and greater
portability. The lower the level (essentially printing RTL) the
more bitwidth-specific and FPGA-specific the design tends to
get - lowering area at the expense of portability and design
time.

REFERENCES

[1] Intel Corporation, “BFLOAT16 Hardware Numerics Definition,” 11
2018. [Online]. Available: https://software.intel.com/sites/default/files/
managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf



[2] Intel Arria®10 Device Overview, 2018, https://www.intel.com/content/
dam/altera-www/global/en US/pdfs/literature/hb/arria-10/a10 overview.
pdf.

[3] Intel Stratix®10 GX/SX Device Overview, 2018, https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/
s10-overview.pdf.

[4] M. Langhammer and B. Pasca, “Floating-point DSP block architecture
for FPGAs,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15.
New York, NY, USA: ACM, 2015, pp. 117–125. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689071

[5] M. Langhammer, G. W. Baeckler, S. Gribok, D. N. Denisenko,
and B. Pasca, “Methods for using a multiplier to support
multiple sub-multiplication operations,” Oct 2018. [Online].
Available: https://assignment.uspto.gov/patent/index.html#/patent/search/
resultAssignment?searchInput=20190042198&id=47091-888

[6] A. J. Chung, K. Cobden, M. Jervis, M. Langhammer, and B. Pasca,
“Tools and techniques for efficient high-level system design on
FPGAs,” CoRR, vol. abs/1408.4797, 2014. [Online]. Available: http:
//arxiv.org/abs/1408.4797

[7] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design and Test, 2011.


