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Abstract—FPGAs are now being commonly used in the dat-
acenter as smart Network Interface Cards (NICs), with cryp-
tography as one of the strategic application areas. Public key
cryptography algorithms in particular require arithmetic with
thousands of bits of precision. Even an operation as simple as
addition can be difficult for the FPGA when dealing with large
integers, because of the high resource count and high latency
needed to achieve usable performance levels with known methods.
This paper examines the architecture and implementation of
high-performance integer adders on FPGAs for widths ranging
from 1024 to 8192 bits, in both single-instance and many-core
chip-filling configurations. For chip-filling designs the routing
impact of these wide busses are assessed, as they often have
an impact outside the immediate locality of the structures.
The architectures presented in this work show 1 to 2 orders
magnitude reduction in the area-latency product over commonly
used approaches. Routing congestion is managed, with near 100%
logic efficiency (packing) for the adder function. Performance for
these largely automatically placed designs are approximately the
same as for carefully floor-planned non-arithmetic applications.
In one example design, we show a 2048 bit adder in 5021 ALMs,
with a latency of 6 clock cycles, at 628 MHz in a Stratix 10 E-2
device.

I. INTRODUCTION

FPGAs are increasingly expected to compete with ASICs.
Designs such as Microsoft Catapult [1] and Project Brainwave
[2] show that FPGAs can be used directly in datacenter. The
flexibility of the FPGA has made it particular useful for the
construction of Smart NICs [3], with the increased need for
security driving the adoption of more complex encryption
applications in the soft logic fabric.

Algorithms such as Elliptic-Curve Cryptography (ECC) and
RSA require the processing of very large integers, typically
orders of magnitude larger than those naturally found in tradi-
tional FPGA designs. Newer sieve methods have made smaller
RSA widths such as 1024 bits vulnerable to attack, driving the
adoption of higher precision such as 4096 bits. Current FPGA
architectures perform well in the 32 to 64 bit range, typically
with 8 bit [4] and 20 bit [5] granularity. Traditional FPGA
pipelining approaches used for the implementation of high-
throughput, larger integer addition often has a prohibitive cost,
both in area and latency, with a knock-on effect of increased
power consumption.

Two key metrics are derived for evaluating the performance
of a given architecture: 1/ utility -or the need for many
operations per FPGA- which a direct consequence of the logic
resource utilization, and 2/ fitting - or the efficiency in the use
of the FPGA. Complex designs, especially those using large
amounts of arithmetic from the instantiation of numerous carry

chains, often map poorly to the FPGA architecture. These
designs use large amounts of both logic and routing; the sphere
of influence of routing congestion introduced by the design
affects logic utilization even far away from the adder. The
impact to FPGA utilization is noticed in two ways: first, the
low efficiency of the actual mapping, and second, the reduction
in the availability of the rest of the FPGA.

These requirements and challenges give us two goals. We
need to create an effective large-arithmetic methodology to
make FPGAs a competitive platform for encryption, based on
PPA (power, performance, area) metrics. At the same time,
arithmetic mapping must use the FPGA efficiently, and allow
other functions or portions of the application to easily coexist
with the arithmetic datapaths.

Consequently, we make two main contributions with this
work:

• We develop a way of generalizing the description and
construction of very large adders for FPGAs, with a
modest area increase over an equivalent ripple carry
adder.

• We show a method for achieving a deterministic near
100% logic packing density, for any adder size, while
maintaining a very short latency. These methods will
leave the unused logic in the device completely un-
touched, along with the routing to/from, and internal to
these regions.

Perhaps most significantly, the density and performance
numbers are achieved without hand placement or relative
placement directives; instead, implied relative placement
within a small carry group is combined with a sparse network
of combinatorial logic that can be completely randomly placed.
We report on a number of architectures and approaches,
allowing the user to choose from many different possibilities
to realize their designs.

Our paper is organized as follows. We survey existing
methods of adder implementation on current FPGAs, starting
with smaller adder optimizations, followed by larger adders in
the region of 100 to 1024 bits in Section II. We then introduce
our proposed architectures and approaches, with six different
structures in Section III. The results, comprising a sweep of
several parameters for adder widths ranging from 1024 to
8192 bits, are presented in Section IV. Designs, consisting
entirely of these adders, with the logic utilization of the device
approaching 100% will be evaluated in Section IV-C. Finally, a
summary of future work, which will improve these methods by
maintaining relatively constant performance for many instance



designs will follow in Section V along with the conclusions
in Section VI.

II. PRIOR WORK

Huge adders - that is to say 1000s of bits, rather than
large adders of merely 100s of bits - appear to be poorly
represented in the literature, at least at the application level.
Many published works have focused on optimizing shorter
adder density on existing devices.

Over the last several generations of FPGA, density has
increased in line with process node scaling, but system speed
on a full FPGA has hardly moved. Circuit and architecture
improvements have made it possible to run some devices
near 1 GHz for example designs, but achieving 500MHz for
a complex, chip filling application is very challenging. The
shorter adder latencies reviewed here will usually be faster,
but the longer adders do not approach this performance level.

In [6], the LUT logic associated with the carry chain is used
to compress a portion of the carry function of an adder, and the
set of carry bits is used to generate the output of the adder with
a second combinatorial layer. This gives a faster adder than a
simple ripple carry adder of a given length, with up to a 30%
decrease in propagation delay reported. The method is only
effective for a relatively narrow set of precisions; typically 64
bits, sometimes more, and only for a single ripple carry adder.
The authors state that hand placement is needed to realize the
benefits of this approach.

In [7], an alternate approach is taken, which takes advantage
of the ternary compression feature in the Xilinx FPGAs, and
extends it to support 4:2 compressors. Very high speeds are
reported, which appear to approach the clock tree limit of
the target FPGAs, but are only given for relatively small
precisions.

One of the first detailed studies of large adders on FPGAs
was in [8], where the pipelined carry adder was explored.
The classical decomposition of a longer adder into shorter
segments was developed into a functionally equivalent opera-
tion with a prefix structure implemented as a 2n length ripple
carry adder (RCA). The complexity of any carry forwarding
was then contained entirely in the RCA, which occupied
only a single level of logic. The latency, and therefore the
number of balancing pipelines, was significantly reduced. Area
was typically halved, although this was for a relatively small
precision. There would likely have been a more significant
savings for longer adders, where a deeper pipeline would have
been required for the classical method.

The methods of these two publications is then improved
in [9], and detailed in [10]. The 2n length ripple carry
adder (RCA) prefix structure is replaced by a n length RCA,
plus some combinatorial logic, potentially cutting the latency
through this portion of the design in half. This structure is
referred to as the CCC in the paper. Three different large
adder architectures are presented. The first, AAM, creates
{generate,propagate} ({G,P}) pairs by adding segments of
the inputs together. The G bit is the carry out of the segment
sum, and P is the carry out of the sum plus one, implemented

by an adder with the carry in tied to ’1’. The {G,P}
pairs are processed by the CCC and produce a carry in per
output segment. The {G,P} segment adder results are then
muxed by the output carry bits to create the output. The
second, CAI, creates the P bits using a comparator. In the
targeted Xilinx architecture, the 5LUT logic structure can
perform a comparator in half the number of cells compared
to an RCA. The output calculation must now be an addition
instead of a mux operation, and is implemented by adding
the prefix calculated carry bit to the delayed sum of the input
segment generate calculation. The number of LUTs on the
output segment are the same, although the ripple carry output
could restrict placement flexibility slightly compared to the
bitwise muxes. This could be offset, however, by the smaller
comparator structure on the input side. The final architecture,
CCA, calculates {G,P} using a pair of comparators. Both
input segment values must be routed to the output in this case.

The latencies for all these adders is short; there is little point
in making the structure deeper as the RCA in the prefix will
quickly become the limiting factor. This is reflected in the
reported results, where an adder frequency of 250MHz was
specified, which was stated as the likely achievable system
speed.

A further development of these approaches is reported in
[11], where the CCA architecture is improved, and a somewhat
different method is introduced. Both of these, however, are
built on the same principle; a carry lookahead structure is fed
by a high radix {G,P} pair, and the calculated carries are
used to create a final binary result. In this work, larger adders
up to 1024 bits are reported, but without pipelining - only a
combinatorial delay.

Two limitations are evident in all the previous work. First,
only a limited scaling is supported, with a maximum length
of 1024 bits reported. Secondly - and commonly a trait
across many FPGA design studies - is there is no system
consideration analyzed. In all cases, only a single instance
of described design is implemented, typically without packing
efficiency or routing stress reported. In contrast, the goal of
our work is that it can be scaled up to device level, with logic
and routing stress curated to provide a very dense system at
a high frequency.

III. ADDER ARCHITECTURES

We begin with the basic premise of [8], [10], [9], and [11].
We will implement large adders with a high radix {G,P} pair
generation feeding a prefix structure. We will target effective
and efficient use of the FPGA from the start. In [8], [10],
[9], considerable effort is spent on analysis of the optimal
decomposition granularity of the adders. Our approach will
be different. We notice that modern FPGAs have a natural
arithmetic granularity, and we will fix our {G,P} generation
(and in most cases the output calculation as well) to these
points. We will use six different adder topologies, and four
types of prefix structures. By sweeping these parameters
over a wide set of very large adders, the possibilities of
FPGA mapping and limitations should become clear. Although
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Fig. 1. Proposed wide adder architectures

we will report adder widths from 1024 to 8192 bits, our
approach could be continued indefinitely. Performance can
remain largely constant as precision increases, and can be
finely adjusted using modest pipelining increments. We also
show designs with many instances of adders.

Architecture one (Figure 1a) is a canonic representation
of our approach; we use it as a baseline for comparing the
other architectures. The input word is broken into segments
that are the same size as the granularity of the carry chains
(20 bits in the case of Stratix 10), minus a bit. This allows
the G or P bit to output directly from the carry chain into
the local routing with the same characteristics are the rest
of the output bits of the LAB (assuming they are used for
the architecture in question). Note that in all of the adder
architecture figures, P0 is drawn for regularity of the structure,
although it is arithmetically redundant, and not found in the
actual core. The two drawn pipeline stages in the figures are
only logical representations of the pipelining found inside the

core. In every case the input stage (prior to the first logic
level) is not pipelined, but the output stage is. Depending on
the architecture, the input stage (prior to the prefix) has one or
two pipelines. The remaining pipelines are in the prefix stage,
which will contain at least one.

The {G,P} pair is fed to a prefix network - in this paper
we use Brent-Kung [12], Han-Carlson [13], Kogge-Stone [14],
and Sklansky [15] structures - which creates a carry vector
for the output addition. The first output segment does not
require a carry in, and the last input segment does not feed
the prefix tree. A depth based re-timing algorithm distributes
the number of pipeline stages allocated to the prefix structure
to that network.

In architecture one, the input values are also used by the
output addition. This requires the delay of two wide vectors
through the circuit, and may be a significant contributor to the
cost of this implementation. The independence of the output
from the input calculation, however, may improve routability.



Architecture two (Figure 1b) is an improved version of
architecture one. The sum of each segment (the first 19 bits
of the G calculation for the most common 20 bit granularity)
is routed to its counterpart output adder segment. This should
reduce resource usage, as only a single adder precision word
is delayed.

Architecture three (Figure 1c) is an improved version of
architecture two. The P calculation is not based on the input
segment, but the sum of the input segment, which is the output
of the adder creating the G signal. This will hopefully have
a small positive impact on routability of the input portion of
the design.

Architecture four (Figure 1d) is a further improved version
of architecture three. By inspection, a P can only be created
when every bit position of the input segment addition (G) is a
’1’. This can easily be implemented by a 19 input AND gate
(in the case of a 20 bit granularity).

Architecture five (Figure 1e) uses a different output ap-
proach. The output segment is either the input segment G or
P adder result. Both are delayed to the output, and selected
by the respective carry vector bits. This adder should be about
the size of the first adder, but the purely combinatorial output
structure may give more routing flexibility in some cases.

We first generated a sweep of several hundred experiments
of these five architectures. Architecture two was almost always
the smallest, and usually had the best PPA metrics. We
developed architecture six (Figure 1f) from different aspects of
architectures two, three, and four. We wanted to use the idea
of architectures three and four of the G or P adder following
the other, to reduce routing stress. The problem with this is
that the pipeline delay (and therefore the amount of logic) is
one cycle greater, so we needed a way to reduce the pipeline
delay of the G adder to the output stage. We implemented
this by calculating P first, and then subtracting ’1’ to get the
G bit, and it’s associated segment addition value. The results,
unfortunately, were usually slightly worse than architecture
two.

IV. RESULTS

In order to fully explore the performance of the different
architectures, we ran a large matrix of compiles over a wide
mix of parameters: adder precision, adder granularity, pipeline
depth, and prefix tree type, totaling over 400 individual exper-
iments. We cannot analyze more than a small subset of the
results here, but will summarize what we have learned using
these methods. A larger subset of the results are reported later
in this paper as Table III. First, we present results in a tabular
form for a single adder type, along with some comments. This
tabulation can be explored by the reader so that they can draw
their own conclusions. Next, we use plotted graphs a further
subset matrix of the results, in order to compare the interaction
of different elements of the experiments. Finally, we show and
interpret a number of post-fitting floorplans, from individual
adders to chip filling designs, and correlate these with our
goals.

TABLE I
PERFORMANCE RESULTS FOR THE PROPOSED ADDER ARCHITECTURES

FOR A 2KB ADDER, WITH A PIPELINE DEPTH OF 6 CYCLES ON A
STRATIX 10 E-2 DEVICE.

Arch. Prefix Type Area (ALM) Prefix Area FMax (Mhz)
1 Brent-Kung 7659

210

575
2 Brent-Kung 5021 628
3 Brent-Kung 5558 644
4 Brent-Kung 5309 613
5 Brent-Kung 7000 606
1 Han-Carlson 7760

305

622
2 Han-Carlson 5135 631
3 Han-Carlson 5646 646
4 Han-Carlson 5401 578
5 Han-Carlson 7109 654
1 Kogge-Stone 7887

430

640
2 Kogge-Stone 5254 680
3 Kogge-Stone 5741 654
4 Kogge-Stone 5517 648
5 Kogge-Stone 7217 660
1 Sklansky 7677

230

605
2 Sklansky 5041 636
3 Sklansky 5584 631
4 Sklansky 5358 594
5 Sklansky 7004 651

A. Tabulated Results

Table I shows the performance of our proposed adder
architectures for a 2Kb adder, having a total pipeline depth of
6 cycles. The lowest reported area was close to 5K ALMs for
all prefix network topologies, and was achieved by architecture
two. The frequencies of all these architectures are reliably over
600MHz on a Stratix 10 E-2 device. There was a small vari-
ation in performance and area with different prefix tree types.
On an architectural basis, there appears to be an quasi linear
relationship between prefix tree complexity and performance,
with about a 5% variation across the experiments.

We can see that the performance is closely correlated to the
prefix tree; as the per-segment operations (the creation of G,
P , and the final output addition) are mapped to the physical
carry chain boundaries in almost all cases, the performance
of the majority of the circuit is known and reproducible for
all adders implemented with these methods. Any performance
reduction from the carry chain segment values is then due to
two factors: the distance from the source of the input operands,
and the critical paths inside the prefix tree. The prefix tree
areas vary slightly from compile to compile, so to make it
easier to interpret the table we have averaged out the resources
for each tree group, and rounded them to the nearest 5 ALMs.
Although the tree areas vary in size considerably, with Kogge-
Stone requiring about twice the resources of Brent-Kung, the
impact to the overall size of the adder is very small, typically
about 5%.

B. Graphed Results

While detailed analysis of the many different options and
features can partially done using the portion of the compiled
results tabulated in the previous section, the comparison of
some aspects of the large adders is better understood graphi-
cally.
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In Figure 2 the five different architecture types are compared
for a 2Kb adder, across pipeline depths of 4, 6, and 8 cycles;
in this case, the prefix is fixed to Brent-Kung. The canonic
type 1 is always the largest, followed closely by type 5. This
is directly related to the cost of the delay lines of the input
operands to the output stage. In types 1 and 5, two widths
are forwarded to the output stage, whereas a single width is
forwarded for other structures. Types 2,3, and 4 exhibit the
same relative cost to each other independent of the overall
pipeline depth of the adder. Types 2 and 3 appear to have
the same functional structures, but type 3 is uniformly larger.
This is because the propagate calculation follows the generate
calculation in type 3, and this single cycle delay (register
bank) increases the area accordingly. In type 4, the propagate
calculation is combinatorial - and half the size of the carry
chain calculation - which reduces the area compared to type
3. By inspection, we can see the effect of a single adder width
operand delay, and the effect of removing the equivalent of half
an operand calculation. The area of each of these architecture
type can be estimated accurately in advance.

The speed of each architecture increases monotonically
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with latency. Type 1 is typically the slowest, with only a
minor difference between the other architectures for this single
instance study. Type 3 shows a slight non-linearity at pipeline
= 6, but the overall effect in a system design between the
different types is probably not significant at the system level.

In Figure 3, the different prefix types are compared over the
three pipeline depths, again for a 2Kb adder. Architecture 2 is
used for all instances. There is only a small variation in size, as
expected; although the prefix trees vary greatly in relative size,
their sizes are still quite small compared to the overall size of
an adder. One observation from this graph is that as pipeline
depth increases to 8, the performance is almost uniformly over
700MHz, which is approaching the expected speed of a single
carry chain in the targeted Stratix 10 E-2 device. As a 2Kb type
2 adder has approximately 300 20bit carry chains, this also
illustrates the effectiveness of decomposing a larger adder into
smaller carry chains, all connected by a purely combinatorial
(i.e. not containing a carry chain) arithmetic structure such as
a prefix tree.

Speed does vary by prefix type. At pipeline = 6 all trees have
approximately the same performance except for the Kogge-



Stone tree, which is approximately 10% faster. At pipeline =
8, however, the Kogge-Stone tree is about 5% slower; all other
trees are fairly closely matched in performance. Looking at
all of the other performance variations per tree type across the
entire dataset does not appear to show a significant difference.
One conclusion from this is that the tree type could be varied
during the timing closure phase of a project to give different
fitting options.

In Figure 4, the effects of pipelining at different lengths
is explored. Each area group (for adder widths 1Kb, 2Kb,
4Kb, and 8Kb) shows the impact of pipeline depths 4, 6,
and 8, respectively. As expected, the total area of an adder
at a given pipeline depth is directly proportional to the adder
width, and the incremental cost of an adder is also linear
to the pipelining. What is shown in the speed graph is how
the performance degradation with increasing adder width can
be compensated by increasing pipelining, almost determinis-
tically. Each frequency line shows the approximately linear
reduction in performance per level of pipelining: the lowest
line is for pipeline = 4, the next for pipeline = 6, and the top
line for pipeline = 8. A 2Kb adder with pipeline = 6 will run
at around 650 MHz, but a 4Kb adder with this pipeline depth
is about 15% slower. By increasing the pipeline depth to 8,
however, the 4Kb adder will match the performance of the
2Kb adder. As the performance degradation follows an almost
linear decrease, we can confidently map the performance of an
individual instance vs. latency. We can expect that a pipeline
depth of 5 would fall almost perfectly in the middle of the
depth 4 and depth 6 curves.

We can also see that we cannot exceed 750MHz, no matter
how deeply pipelined the adder is; as explained previously, this
limit is set by the performance of a 20bit carry chain segment.
Reducing the segment length will complicate the fitting - and
in turn significantly increase the complexity of the prefix tree.
The reduction in performance of the larger adders is likely
caused by the complexity of the prefix trees, so any attempt
to shorten the segment length below the natural hardware
boundaries of the FPGA will likely be counter-productive.

Figure 5 shows the effect of increasing segment lengths,
using virtual, rather than physical segments, but again aligned
to natural hardware boundaries. Architecture 2 with a pipeline
depth of 4 is used for all adders. There is a small, monotonic
decrease in area with increasing segment length. There are two
reasons for this: 1/the prefix tree complexity is reduced, and
2/ the overhead in routing out the calculated G and P bits.
The bottom frequency line corresponds to the 30 bit segment
line - aligning to multiples of hard boundaries (20 and 40 bits
in the case of Stratix 10) results in a higher performance than
a soft boundary alignment.

C. Floorplans - Single and Multiple Instances

We created a number of designs with increasing numbers of
large adders, choosing a 2Kb, architecture 2, pipeline 6, with
a Brent-Kung prefix tree for all cases. The fitting methodology
used virtual pins (virtual pins occupy half ALM each), which
can be used to represent physical source and sink locations

Fig. 6. Logic Packing for Adder

TABLE II
SINGLE AND MULTI INSTANCE ADDER RESULTS

Units Area (ALM) Area(%) Speed (Mhz) Time
1 8K 1% 628 -
50 404K 44% 478 4h39m

100 810K 87% 332 10h00m
110 886K 95% 295 12h01m

required to tie a larger design together. In a real-world appli-
cation, a set of large adders would likely only occupy a small
percentage of the device, as the application wrapped around
the adders would require the majority of the logic and other
resources. The results for our runs are summarized in Table II.
Note that all of compiles were pushbutton, without any pre-
compile floorplanning or fitting directives.

Figure 6 shows a portion of a single adder instance. Note
that virtually every single ALM in every LAB is utilized -
this may be only using the carry chain, only the LUT, or a
combination of the two. Locations marked in yellow denote
virtual pins.

A floorplan for a multi-core design containing 50 of the
described adder instances is shown in Figure 7. We can see that
a subset of the device is used, with the logic evenly distributed
amongst the portion of the utilized resources. This will allow
system logic to be inserted in between the adders, as well as a
significant amount of the device being completely untouched.

As the number of instances increases, both the gaps be-
tween the adders and the untouched portions of the device
reduced uniformly. The floorplan in Figure 8 shows an almost
completely packed device, with 95% logic utilization. This is
an exceptionally high density for a complex FPGA design,
especially one consisting only of arithmetic functions. This
shows that our carry chain granularity aligned methodology
allows for a deterministic use of FPGA logic. Speed, however,
declined, with an almost linear reduction with increasing
density. Compile time also increased only linearly, even as
utilization approached 100% - this again demonstrates the



Fig. 7. 50 2Kb Adder Instances

effectiveness of the alignment design method.
We analysed the critical paths in the more fully packed

designs and found that Quartus was allowing segments from
different adders to mix. Although this did not impact the
performance of the vast majority of the logic (which was all
snapped to LAB boundaries), some of the paths in the prefix
tree spanned a considerable portion of the device.

V. FUTURE WORK

The results of these adders, and in particular the ability to
almost completely fill a large FPGA with arithmetic without
any intervention, gives us several paths for future work.

We now have deterministic fitting, with only a linear degra-
dation in performance. As the majority of the logic operates at
a known speed, we can concentrate on the subset of the logic
with the critical paths. To allow all users to take advantage
of the potential for high performance arithmetic on large or
huge numbers on FPGA, we will look for methods that do not
require expert knowledge of FPGA tools. Our next step will
be to develop tools that enforce a tighter physical grouping
of logically related arithmetic operations during placement.
We will also improve the register retiming of the prefix
networks, to an predicted span-based method from the current
logical depth-based method. These approaches will likely vary
significantly from network to network because of the differing
topologies.

Next, we will extend our arithmetic mapping techniques
to large multipliers. The construction of larger multipliers

Fig. 8. 110 2Kb Adder Instances

from smaller multipliers, whether direct or via multi-way
polynomial methods, requires large adders. Now that we have
demonstrated the effective implementation of these adders, we
can combine our planned research on virtual floorplanning
with the use of the embedded multiplier components on the
FPGA.

VI. CONCLUSIONS

In this paper, we have shown that any number of very large
adders, often with many thousands of bits of precision, can be
fit into current FPGAs, with deterministic results. Whether a
single adder, or many instances, the effective utilization can be
accurately estimated in advance, including up to almost 100%
device use. Single instance large adder performance is near
the maximum expected performance for small adders that are
commonly implemented in FPGA, and an orderly performance
reduction is observed even as the device approaches being
completely full.

The analysis of the many experiments shows a clear path
for new research towards improving the performance of single
instances of these adders to the fastest of the current architec-
tures, as well as flatten the speed reduction observed as many
are used.

The enhanced arithmetic capability of the FPGA, using
existing device architectures available to all users, will open up
new application areas, as the use and implementation of large
arithmetic can now be confidently specified and planned.



TABLE III
FULL TABLE: L - ADDER LENGHT, P - PIPELINE DEPTH, PRX - PREFIX TYPE, T - ADDER CONFIGURATION TYPE

L P PRX T CORE TREE FMax L P PRX T CORE TREE FMax L P PRX T CORE TREE FMax L P PRX T CORE TREE FMax
ALMs ALMs E-2 ALMs ALMs E-2 ALMs ALMs E-2 ALMs ALMs E-2

1024

4

B-K

1 2754

40

493

2048

4

B-K

1 5550

110

490

4096

4

H-C

1 11546

635

419

8192

4

B-K

1 22359

495

361
2 1935 544 2 3907 501 2 8219 415 2 15776 338
3 2211 589 3 4460 486 3 9328 447 3 17972 361
4 2094 578 4 4184 472 4 8845 414 4 16933 349
5 2420 526 5 4879 496 5 10108 424 5 19590 314
6 2260 572 6 4548 476

K-S

1 11873

975

404 6 18378 349

H-C

1 2809

100

546

H-C

1 5678

220

495 2 8551 424

H-C

1 23326

1735

350
2 1989 546 2 4030 513 3 9705 430 2 16607 324
3 2254 578 3 4587 503 4 9237 429 3 18826 356
4 2134 572 4 4319 514 5 10436 453 4 17779 364
5 2472 595 5 5004 482

SK

1 11238

350

378 5 20420 324

K-S

1 2865

150

556

K-S

1 5913

440

469 2 7970 413

K-S

1 24291

2360

329
2 2046 501 2 4209 497 3 9088 431 2 17631 354
3 2311 580 3 4715 523 4 8571 445 3 19729 363
4 2182 601 4 4486 512 5 9916 417 4 18739 382
5 2524 600 5 5176 513 5 21159 329

SK

1 2789

75

563

SK

1 5599

150

455

6

H-C

1 15684

730

546

SK

1 22561 730 318
2 1969 562 2 3941 469 2 10410 582 2 16007 349
3 2234 560 3 4480 459 3 11377 584 3 18246 337
4 2111 574 4 4244 514 4 10858 527 4 17156 363
5 2450 527 5 4930 467 5 14382 523 5 19833 328

K-S

1 16036

1045

530

6

B-K

1 3811

90

693

6

B-K

1 7659

210

575 2 10770 575

6

B-K

1 30774

970

398
2 2496 705 2 5021 628 3 11675 582 2 20227 436
3 2769 757 3 5558 644 4 11196 536 3 22368 443
4 2639 665 4 5309 613 5 14721 552 4 21409 434
5 3473 742 5 7000 606

SK

1 15382

485

533 5 28191 431
6 2810 670 6 5633 623 2 10112 581 6 22709 494

H-C

1 3841

120

704

H-C

1 7760

305

622 3 11189 593

H-C

1 31337

1475

478
2 2526 707 2 5135 631 4 10759 577 2 20791 467
3 2786 706 3 5646 646 5 14071 553 3 22860 477
4 2683 697 4 5401 578 4 21892 471
5 3497 711 5 7109 654

8

B-K

1 19575

600

570 5 28760 453

K-S

1 3848

120

690

K-S

1 7887

430

640 2 12310 648

K-S

1 32511

2715

441
2 2531 704 2 5254 680 3 13384 614 2 21954 444
3 2807 696 3 5741 654 4 12835 624 3 23726 478
4 2684 702 4 5517 648 5 18252 651 4 22781 443
5 3506 736 5 7217 660 6 13510 600 5 29950 447

SK

1 3806

85

702

SK

1 7677

230

605 2ML 9559 566

SK

1 30817

990

467
2 2487 705 2 5041 636

H-C

1 19713

700

593 2 20254 456
3 2763 716 3 5584 631 2 12448 651 3 22425 496
4 2651 701 4 5358 594 3 13523 609 4 21490 484
5 3467 748 5 7004 651 4 12970 637 5 28198 440

5 18413 632

8

B-K

1 4862

140

740

8

B-K

1 9762

290

685

K-S

1 19834

875

557

8

B-K

1 39167

1220

529
2 3055 726 2 6137 742 2 12567 673 2 24651 538
3 3329 754 3 6679 715 3 13671 588 3 26789 537
4 3194 787 4 6409 704 4 13105 619 4 25737 504
5 4525 750 5 9101 713 5 18552 589 5 36560 512
6 3362 707 6 6742 696

SK

1 19560

625

576 6 27083 518

H-C

1 4855

130

745

H-C

1 9793

335

720 2 12298 651

H-C

1 39505

1495

553
2 3047 772 2 6158 720 3 13409 588 2 24972 498
3 3321 755 3 6705 708 4 12963 620 3 27165 536
4 3191 749 4 6436 716 5 18294 649 4 26103 534
5 4518 745 5 9133 700 5 36934 555

K-S

1 4842

140

722

K-S

1 9812

335

708

SK

1 39343

1375

517
2 3029 700 2 6182 701 2 24794 574
3 3306 723 3 6731 706 3 26949 559
4 3192 723 4 6467 681 4 25996 513
5 4503 727 5 9157 701 5 27777 461

SK

1 4846

120

740

SK

1 9739

240

702
2 3036 753 2 6114 724
3 3310 704 3 6655 719
4 3192 779 4 6443 725
5 4508 773 5 9091 701
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