
FloPoCo
an arithmetic core generator for FPGAs

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
Florent de Dinechin, Bogdan Pasca, projet Arénaire

CENTRE NATIONAL

DE LA RECHERCHE

SCIENTIFIQUE

ECOLE NORMALE SUPERIEURE DE LYON

y
=

n∑
i=

0
x i

log x e

x

√ x2 +y2 +z2
sin

e x+y

√
x

πx

Arithmetic Core Generator

FloPoCo

FPGAs as floating-point accelerators?

IEEE-754-compatible +,−,×,÷,√

⊕Massive parallelism
	 Each operator 10X slower than a processor’s

−→ no match to GPGPU, ClearSpeed, ...

Use FPGA flexibility!

Flexibility in precision

• There is life between single and double precision
•Never compute more accurately than needed

– mix-and-match fixed-point and floating-point [2]
– FP interfaces, internal fixed-point computations [4]
– Automated error analysis [5, 7, 8, 6, 4]

Flexibility in algorithms

•Operators may be specialized to a context
– Multipliers by a constant [1]
– Squarers [3]

• Specific hardware may be designed for coarser operators
– elementary functions (10× the throughput of a Pentium) [6, 7, 8]
– application-specific accumulator [4] – see below

Floating-Point Cores, but not only...

Not a library, a generator

• An infinite virtual library
•Greater parametrization and flexibility

– Optimize for different hardware targets (timings, LUT and DSP
structure)

• Better design-space exploration
– Example: evaluation of arbitrary functions using HOTBM [5]

•Generate simple and tidy VHDL code
•Written in C++, using GMP, MPFR and Sollya
• Freely available under the LGPL

Goal: Not your neighbour’s FPU

• Basic operations, with a bit of pepper

• Elementary functions (sine, exponential, logarithm...)

• Algebraic functions (1/x ,
√

x , polynomials, ...)

•Compound functions (log2(1± 2x), e−Kt2
, ...)

• Sums, dot products, sums of squares, norms...

• Interval arithmetic

• ...

Current FloPoCo operators

• Integer Adder / Multiplier / Squarer [3]

• FP Adder / Multiplier / Divider

• Integer / FP constant multiplier [1]

• Long accumulator / LongAcc2FP

• FP Exponential (not pipelined yet) and FP Logarithm [8]

• fixed-point functions by HOTBM (not pipelined yet) [5]

• Automatic test-bench generation for all these operators

FloPoCo - the framework

Class hierarchy overview Automatic pipeline management

•Designers think in terms of pipeline levels

• Attributes for: cycle of a signal, currentCycle, lifeSpan

• Automatic register insertions – Ask for a demo!
(...)
// at some cycle
vhdl << declare("finalFraction", wF+g) << " <= " ...
(...)
// at some other cycle
vhdl << declare("finalExp", wE+1) << " <= " ...
(...)
// enter next cycle
nextCycle();
vhdl << declare("finalSoP", wE+wF+g) << " <= "
<< use("finalExp") << range(wE-1,0)
<< " & " << use("finalFraction") << "; ";

Targets

• Abstract target FPGA features through methods:
– Architecture related: lutInputs()

– Delay related: suggestAdderSize(double delay)

• Single-code for target-optimized operators

TestBench Generation

• Exploit mathematical nature of arithmetic operators
– FP operator output = Rounding ◦ f(inputs)
– Simpler and less error prone than mimicking the architecture

•Generic or operator-specific test-case generation
– double-precision exp in (−1024,1023) only
– addition of FP numbers with close exponents

Example 1 - Accumulation of FP numbers

An application-tailored fixed-point accumulator for floating-point inputs
• designed to never overflow

• designed as accurate as the application requires

Accumulator significand never needs to be shifted

000

0 0000

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

000 0 0 0 0 00 0 0 0 0

1

1

1 1 0 00

1

1 1

1 1

1

1 1 1 1 1 1

1111

100 1 1 1 1 1 1 101010 0

0000 11111

wA = MSBA − LSBA + 1

Accumulator

wF + 1 LSBA = −12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

summand (wE , wF ) CoreGen FP adder (wE , wF ) 2wF accumulator, MaxMSBX = 1 2wF accumulator, MaxMSBX = MSBA

(7,16) 304 slices + 1 DSP, 12 cycles @ 359 MHz 129 slices, 8 cycles @ 472 MHz 176 slices, 9 cycles @ 484 MHz
(8,23) SP 317 slices + 4 DSP, 16 cycles @ 450 MHz 165 slices, 8 cycles @ 434 MHz 229 slices, 9 cycles @ 434 MHz
(10,37) 631 slices + 1 DSP, 14 cycles @ 457 MHz 295 slices, 10 cycles @ 428 MHz 399 slices, 11 cycles @ 428 MHz

(11,52) DP 771 slices + 3 DSP, 15 cycles @ 366 MHz 375 slices, 11 cycles @ 414 MHz 516 slices, 12 cycles @ 416 MHz

• faster and arbitrarily more accurate than a naive floating-point approach

• cost: designer-provided bounds on the accumulated values

sign and exception handling

X

X Y EX − EY

Y

MY

MYMX

M ′Z

EX

FZ
k

EZ

EX

FZ

M ′Z

MX
M ′Y

Z

wE + wF + 3 wE + wF + 3

wE + wF + 3 wE + wF + 3

wF + 1wF + 1wE

wF + 3

dlog (wF + 3)e

wE + 1

wF + 1
wF + 1

wE
wF + 4

wF + 1
wF + 4

wF + 1

wE

wE + wF + 2

wE + wF + 3

close/far

+/–

final normalization

LZC

shift/round
round

shift

/

swap/difference

far path
close path

L
o
n
g
A
c
c
2
F
P

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

mantissa signexponent

fixed-point sum

registers

w ′F

wA

w ′E

carry propagation

LZC + shifter

Input Shifter

1’s complement

2’s complement

Example 2 - Collision detection predicate

Need to compute: x2 + y2 + z2 < r2
Naive approach

• 3 FP multipliers + 2 FP adders + comparison

Specific operator

• Squarers instead of multipliers

• Addition of positive numbers is simpler

•Mantissa alignment in parallel

• Less rounding logic

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

4 + wF + g

wE + wF + g

2 + wF + g

EA

EC

EB
MB2 MC2

P

R2 X Y Z

MXEZEYEX MY MZ

MA2 shifter

sort

sort
squarer squarer squarer

shifter

add

comparison

normalize/pack

unpack Slow version (freq=200) Fast version (freq=400)
Precision area perf area perf
(8,23) FP 940 sl, 12 DSP 20 cycles @ 210 MHz 1188 sl, 12 DSP 29 cycles @ 289 MHz

(8,23) custom 456 sl, 9 DSP 10 cycles @ 319 MHz 453 sl, 9 DSP 11 cycles @ 368 MHz
(9, 32) FP 1268 sl, 12 DSP 20 cycles @ 171 MHz 1874 sl, 12 DSP 37 cycles @ 302 MHz

(9, 32) custom 629 sl, 9 DSP 10 cycles @ 368 MHz 640 sl, 9 DSP 13 cycles @ 368 MHz
(11, 52) FP 2868 sl, 27 DSP 20 cycles @ 106 MHz 4480 sl, 27 DSP 46 cycles @ 276 MHz

(11, 52) custom 1532 sl, 18 DSP 10 cycles @ 237 MHz 1845 sl, 18 DSP 16 cycles @ 362 MHz

Custom slow version: 48% smaller, 29% less DSPs, 50% lower latency, 89% faster
Custom fast version: 61% smaller, 29% less DSPs, 64% lower latency, 27% faster
Custom version is also more accurate

References

[1] N. Brisebarre, F. de Dinechin, and J.-M. Muller. Integer and floating-point constant multipliers for FPGAs. In Application-specific Systems, Architectures and Processors, pages 239–244. IEEE, 2008.
[2] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudoran. When FPGAs are better at floating-point than microprocessors. Technical Report ensl-00174627, École Normale Supérieure de Lyon, 2007.
[3] F. de Dinechin and B. Pasca. Large multipliers with less DSP blocks. Technical Report 2009-03, LIP, École Normale Supérieure de Lyon, 2009.
[4] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran. An FPGA-specific approach to floating-point accumulation and sum-of-products. In Field-Programmable Technologies, pages 33–40. IEEE, 2008.
[5] J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware function evaluation. In Application-specific Systems, Architectures and Processors, pages 328–333. IEEE, 2005.
[6] J. Detrey and F. de Dinechin. Floating-point trigonometric functions for FPGAs. In Field-Programmable Logic and Applications, pages 29–34. IEEE, 2007.
[7] J. Detrey and F. de Dinechin. Parameterized floating-point logarithm and exponential functions for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable Computing, 31(8):537–545, 2007.
[8] J. Detrey, F. de Dinechin, and X. Pujol. Return of the hardware floating-point elementary function. In 18th Symposium on Computer Arithmetic, pages 161–168. IEEE, 2007.

This work was partly supported by the Egide Brancusi programme of the French government, and the XtremeData university programme.


