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Arithmetic Core Generator

FloPoCo

FPGAs as floating-point accelerators?

IEEE-754-compatible +,−,×,÷,√

⊕Massive parallelism
	 Each operator 10X slower than a processor’s

−→ no match to GPGPU, ClearSpeed, ...

Use FPGA flexibility!

Flexibility in precision

• There is life between single and double precision
•Never compute more accurately than needed

– mix-and-match fixed-point and floating-point [2]
– FP interfaces, internal fixed-point computations [4]
– Automated error analysis [5, 7, 8, 6, 4]

Flexibility in algorithms

•Operators may be specialized to a context
– Multipliers by a constant [1]
– Squarers [3]

• Specific hardware may be designed for coarser operators
– elementary functions (10× the throughput of a Pentium) [6, 7, 8]
– application-specific accumulator [4] – see below

Floating-Point Cores, but not only...

Not a library, a generator

• An infinite virtual library
•Greater parametrization and flexibility

– Optimize for different hardware targets (timings, LUT and DSP
structure)

• Better design-space exploration
– Example: evaluation of arbitrary functions using HOTBM [5]

•Generate simple and tidy VHDL code
•Written in C++, using GMP, MPFR and Sollya
• Freely available under the LGPL

Goal: Not your neighbour’s FPU

• Basic operations, with a bit of pepper

• Elementary functions (sine, exponential, logarithm...)

• Algebraic functions (1/x ,
√

x , polynomials, ...)

•Compound functions (log2(1± 2x), e−Kt2
, ...)

• Sums, dot products, sums of squares, norms...

• Interval arithmetic

• ...

Current FloPoCo operators

• Integer Adder / Multiplier / Squarer [3]

• FP Adder / Multiplier / Divider

• Integer / FP constant multiplier [1]

• Long accumulator / LongAcc2FP

• FP Exponential (not pipelined yet) and FP Logarithm [8]

• fixed-point functions by HOTBM (not pipelined yet) [5]

• Automatic test-bench generation for all these operators

FloPoCo - the framework

Class hierarchy overview Automatic pipeline management

•Designers think in terms of pipeline levels

• Attributes for: cycle of a signal, currentCycle, lifeSpan

• Automatic register insertions – Ask for a demo!
(...)
// at some cycle
vhdl << declare("finalFraction", wF+g) << " <= " ...
(...)
// at some other cycle
vhdl << declare("finalExp", wE+1) << " <= " ...
(...)
// enter next cycle
nextCycle();
vhdl << declare("finalSoP", wE+wF+g) << " <= "
<< use("finalExp") << range(wE-1,0)
<< " & " << use("finalFraction") << "; ";

Targets

• Abstract target FPGA features through methods:
– Architecture related: lutInputs()

– Delay related: suggestAdderSize(double delay)

• Single-code for target-optimized operators

TestBench Generation

• Exploit mathematical nature of arithmetic operators
– FP operator output = Rounding ◦ f(inputs)
– Simpler and less error prone than mimicking the architecture

•Generic or operator-specific test-case generation
– double-precision exp in (−1024,1023) only
– addition of FP numbers with close exponents

Example 1 - Accumulation of FP numbers

An application-tailored fixed-point accumulator for floating-point inputs
• designed to never overflow

• designed as accurate as the application requires

Accumulator significand never needs to be shifted
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wA = MSBA − LSBA + 1

Accumulator

wF + 1 LSBA = −12MaxMSBX = 8MSBA = 16

fixed point

Summands (shifted mantissas)

summand (wE , wF ) CoreGen FP adder (wE , wF ) 2wF accumulator, MaxMSBX = 1 2wF accumulator, MaxMSBX = MSBA

(7,16) 304 slices + 1 DSP, 12 cycles @ 359 MHz 129 slices, 8 cycles @ 472 MHz 176 slices, 9 cycles @ 484 MHz
(8,23) SP 317 slices + 4 DSP, 16 cycles @ 450 MHz 165 slices, 8 cycles @ 434 MHz 229 slices, 9 cycles @ 434 MHz
(10,37) 631 slices + 1 DSP, 14 cycles @ 457 MHz 295 slices, 10 cycles @ 428 MHz 399 slices, 11 cycles @ 428 MHz

(11,52) DP 771 slices + 3 DSP, 15 cycles @ 366 MHz 375 slices, 11 cycles @ 414 MHz 516 slices, 12 cycles @ 416 MHz

• faster and arbitrarily more accurate than a naive floating-point approach

• cost: designer-provided bounds on the accumulated values

sign and exception handling
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Example 2 - Collision detection predicate

Need to compute: x2 + y2 + z2 < r2
Naive approach

• 3 FP multipliers + 2 FP adders + comparison

Specific operator

• Squarers instead of multipliers

• Addition of positive numbers is simpler

•Mantissa alignment in parallel

• Less rounding logic

1 + wF 1 + wF 1 + wF
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sort

sort
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shifter

add

comparison

normalize/pack

unpack Slow version (freq=200) Fast version (freq=400)
Precision area perf area perf
(8,23) FP 940 sl, 12 DSP 20 cycles @ 210 MHz 1188 sl, 12 DSP 29 cycles @ 289 MHz

(8,23) custom 456 sl, 9 DSP 10 cycles @ 319 MHz 453 sl, 9 DSP 11 cycles @ 368 MHz
(9, 32) FP 1268 sl, 12 DSP 20 cycles @ 171 MHz 1874 sl, 12 DSP 37 cycles @ 302 MHz

(9, 32) custom 629 sl, 9 DSP 10 cycles @ 368 MHz 640 sl, 9 DSP 13 cycles @ 368 MHz
(11, 52) FP 2868 sl, 27 DSP 20 cycles @ 106 MHz 4480 sl, 27 DSP 46 cycles @ 276 MHz

(11, 52) custom 1532 sl, 18 DSP 10 cycles @ 237 MHz 1845 sl, 18 DSP 16 cycles @ 362 MHz

Custom slow version: 48% smaller, 29% less DSPs, 50% lower latency, 89% faster
Custom fast version: 61% smaller, 29% less DSPs, 64% lower latency, 27% faster
Custom version is also more accurate
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