FloPoCo an arithmetic core generator for FPGAs http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/ Florent de Dinechin, Bogdan Pasca, projet Arénaire INRIA DE LA RECHERCHE

FPGAs as floating-point accelerators?

IEEE-754-compatible +, -, \times , \div , \checkmark ,

Massive parallelism

- ⊖ Each operator 10X slower than a processor's
- \rightarrow no match to GPGPU, ClearSpeed, ...

Use FPGA flexibility!

Flexibility in precision

- There is life between single and double precision
- Never compute more accurately than needed
- mix-and-match fixed-point and floating-point [2]
- FP interfaces, internal fixed-point computations [4]
- Automated error analysis [5, 7, 8, 6, 4]

Flexibility in algorithms

UNIVERSITÉ DE LYON

- Operators may be specialized to a context
- Multipliers by a constant [1]
- Squarers [3]
- Specific hardware may be designed for coarser operators
- elementary functions ($10 \times$ the throughput of a Pentium) [6, 7, 8]
- application-specific accumulator [4] see below

Floating-Point Cores, but not only...

Not a library, a generator

• An infinite virtual library

- Greater parametrization and flexibility
- Optimize for different hardware targets (timings, LUT and DSP structure)
- Better design-space exploration
- Example: evaluation of arbitrary functions using HOTBM [5]
- Generate simple and tidy VHDL code
- Written in C++, using GMP, MPFR and Sollya
- Freely available under the LGPL

Goal: Not your neighbour's FPU

- Basic operations, with a bit of pepper
- Elementary functions (sine, exponential, logarithm...)
- Algebraic functions $(1/x, \sqrt{x}, \text{polynomials}, ...)$
- Compound functions ($\log_2(1 \pm 2^x), e^{-Kt^2}, ...$)
- Sums, dot products, sums of squares, norms...
- Interval arithmetic
- ...

Current FloPoCo operators

- Integer Adder / Multiplier / Squarer [3]
- FP Adder / Multiplier / Divider
- Integer / FP constant multiplier [1]
- Long accumulator / LongAcc2FP
- FP Exponential (not pipelined yet) and FP Logarithm [8]
- fixed-point functions by HOTBM (not pipelined yet) [5]
- Automatic test-bench generation for all these operators

FloPoCo - the framework

Class hierarchy overview

Automatic pipeline management

- Designers think in terms of pipeline levels
- Attributes for: *cycle* of a signal, *currentCycle*, *lifeSpan*
- Automatic register insertions Ask for a demo!
- (...)// at some cycle vhdl << declare("finalFraction", wF+g) << " <= " ...</pre> (...)// at some other cycle vhdl << declare("finalExp", wE+1) << " <= " ...</pre> (...)// enter next cycle nextCycle(); vhdl << declare("finalSoP", wE+wF+g) << " <= "</pre> << use("finalExp") << range(wE-1,0) << " & " << use("finalFraction") << "; ";

Targets

- Abstract target FPGA features through methods:
- Architecture related: lutInputs()
- Delay related: suggestAdderSize(double delay)
- Single-code for target-optimized operators

TestBench Generation

- Exploit mathematical nature of arithmetic operators
- FP operator output = Rounding \circ f(inputs)
- Simpler and less error prone than mimicking the architecture
- Generic or operator-specific test-case generation
- double-precision exp in (-1024, 1023) only
- addition of FP numbers with close exponents

Example 1 - Accumulation of FP numbers

Example 2 - Collision detection predicate

Need to compute: $x^2 + y^2 + z^2 < r_2$ Naive approach

• 3 FP multipliers + 2 FP adders + comparison

Specific operator

Squarers instead of multipliers

 Addition of positive numbers is simpler Mantissa alignment in parallel • Less rounding logic

R_2			Х	Y	Ζ		
Ι.							
	unpack						
	E_X	E _Y	Ez	M _X	1 + W _F	M_{Y} 1 + w_{F}	M_Z 1 + W_F
_	S	ort	<u> </u>	squa	rer	squarer	squarer
1-	+	·[$\overline{}$	1	$2 + W_F + g$	2 + W _F +	$g = \sqrt{2 + W_F + W_F}$
			sort				
		— — F o					<i>M</i> _{C²}
	E _A	E _A		<i>M</i> _{A²}		shifter	shifter
					$2 + w_F + g$	$(2 + W_F +)$	$g = \sqrt{2 + w_F} +$
						add	

	Slow vers	i on (freq=200)	Fast version (freq=400)		
Precision	area	perf	area	perf	
(8,23) FP	940 sl, 12 DSP	20 cycles @ 210 MHz	1188 sl, 12 DSP	29 cycles @ 289 MHz	
(8,23) custom	456 sl, 9 DSP	10 cycles @ 319 MHz	453 sl, 9 DSP	11 cycles @ 368 MHz	
(9, 32) FP	1268 sl, 12 DSP	20 cycles @ 171 MHz	1874 sl, 12 DSP	37 cycles @ 302 MHz	
(9, 32) custom	629 sl, 9 DSP	10 cycles @ 368 MHz	640 sl, 9 DSP	13 cycles @ 368 MHz	
(11, 52) FP	2868 sl, 27 DSP	20 cycles @ 106 MHz	4480 sl, 27 DSP	46 cycles @ 276 MHz	
(11, 52) custom	1532 sl, 18 DSP	10 cycles @ 237 MHz	1845 sl, 18 DSP	16 cycles @ 362 MHz	

•	/	$4 + W_F + g$	
	normalize/pack		
	,	$w_E + w_F + g$	
		arison	

Custom slow version: 48% smaller, 29% less DSPs, 50% lower latency, 89% faster Custom fast version: 61% smaller, 29% less DSPs, 64% lower latency, 27% faster Custom version is also more accurate

References

[1] N. Brisebarre, F. de Dinechin, and J.-M. Muller. Integer and floating-point constant multipliers for FPGAs. In Application-specific Systems, Architectures and Processors, pages 239–244. IEEE, 2008. [2] F. de Dinechin, J. Detrey, I. Trestian, O. Creţ, and R. Tudoran. When FPGAs are better at floating-point than microprocessors. Technical Report ensl-00174627, École Normale Supérieure de Lyon, 2007. [3] F. de Dinechin and B. Pasca. Large multipliers with less DSP blocks. Technical Report 2009-03, LIP, École Normale Supérieure de Lyon, 2009. [4] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran. An FPGA-specific approach to floating-point accumulation and sum-of-products. In Field-Programmable Technologies, pages 33-40. IEEE, 2008. [5] J. Detrey and F. de Dinechin. Table-based polynomials for fast hardware function evaluation. In Application-specific Systems, Architectures and Processors, pages 328–333. IEEE, 2005. [6] J. Detrey and F. de Dinechin. Floating-point trigonometric functions for FPGAs. In *Field-Programmable Logic and Applications*, pages 29–34. IEEE, 2007. [7] J. Detrey and F. de Dinechin. Parameterized floating-point logarithm and exponential functions for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable Computing, 31(8):537–545, 2007. [8] J. Detrey, F. de Dinechin, and X. Pujol. Return of the hardware floating-point elementary function. In 18th Symposium on Computer Arithmetic, pages 161–168. IEEE, 2007.

This work was partly supported by the Egide Brancusi programme of the French government, and the XtremeData university programme.