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What?

The tangent function

CORDIC implementations[7, 4]:

+ iterative low-resource for FPUs in embedded processors

- unrolled stressful routing due to multiple, deep arithmetic

structures

Polynomial approximations (sin, cos + ÷ using inverse [6])

+ map well to DSPs and embedded memory blocks

- wasteful when implemented using operator assembly [2, 5]

We implement the floating-point tangent as a fused operator.

Background

IEEE-754 floating-point value (sign, exponent, fraction):

x = (−1)s2e1.f

wE = 8 (exp. width), wF = 32 (frac. width)- single precision

CR

FR
ulp

CRCR

even

FR

CR - correct rounding
FR - faithful rounding

floating-point numbers

Here we target a faithful floating-point tangent function (1 ulp)
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• periodic, input range restricted to (−π/2, +π/2)

• symmetrical to the origin: tan(−x) = − tan(x)

tan(x) = x +
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How?
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Synthesis results for Stratix-IV C2. MUL = 18-bit multipliers

Architecture Lat @ Freq. Resources

ours 30 @ 314MHz 18MUL, 8M9K, 1172LUT, 1078Reg

tan(πx) [1] 48 @ 360MHz 28MUL, 7M9K, 2633LUT, 4099Reg

sin cos(πx) [3] 85ns 10 MUL, 2*1365 LUTs

div [2] 16 @ 233MHz 1210LUT, 1308REG

div [6] 11 @ 400MHz 8MUL, 4M9K, 274LUT, 291Reg

Algorithm

1. Restrict input to fixed-point

• tan(x) ≈ x for x < 2−wF/2

• dynamic input range: [2−wF/2, +π/2]

• input in error-free fixed-point on 1 + wF + ⌈wF/2⌉ bits

(24+12=36 bits for single precision).

2. Use mathematical identities

tan(a + b) =
tan(a) + tan(b)

1 − tan(a) tan(b)
,

tan(a + b + c) =

tan(a) + tan(b)

1 − tan(a) tan(b)
+ tan(c)

1 −
tan(a) + tan(b)

1 − tan(a) tan(b)
tan(c)

3. Error analysis

• for faithful rounding Etotal < 1ulp

Etotal = Eapprox + Eround

• Eround pack result to floating-point (nearest, 1/2ulp)

• Eapprox method errors + datapath trimmings

• tangent implemented as FP multiplication

p = n × id

• the approximation error (tildes are approx.):

Eapprox = |(p̃ − p)/p|

• the computed product

p̃ = ñ × ĩd

= n(1 + ǫ) × id(1 + ǫ)

= n · id + 2 · n · id · ǫ + n · id · ǫ2.

• approximation error is:

Eapprox = |(p − p̃)/p|

= |(2 · n · id · ǫ + n · id · ǫ2)/(n · id)|

= |2ǫ + ǫ2| ≤ 1/2 · 2−p

• for single-precision p = 24 → ǫ slightly smaller than 2−26

(error bound slightly better than 1/4ulp for numerator and

inverse denominator)

4. Precision-specific optimizations (single-precision)

• use the fixed-point decomposition of the input argument

a - 9bitc - 9bit b - 18bit

• tabulate tan(a) and tan(c) (use embedded memories)

• simplify:

– tan(a) and tan(b) small → tan(a) tan(b) very small

– b < 2−17 safe to use tan(b) ≈ b

→ tangent computed using:

tan(x) =
tan(c) + tan(a) + b

1 − (tan(a) + b) tan(c)

• certify approximations for numerator:

– compute a bound on the error of this approximation:

(a) tan(c) = 0 and tan(a) tan(b) maximal:

a = . 111111111

b = . 111111111111111000

∗ relative error is slightly less than 2−25, and should be

2−26.

∗ but denominator is 1 and carries no error → accuracy

reached

(b) tan(c) minimal but > 0 and tan(a) tan(b) maximal

∗ tan(a) < tan(c) relative error is 2−26 (tabulated preci-

sion for tan(c))

∗ compute both tan(a) and tan(b) with 1 + wF + 2 bits of

accuracy.

• certify approximations for denominator:

– possible cancellation amplifies existing errors

– avoid large cancellation using additional table

– tabulate results for 256ulp before π/2

– largest cancellation can now be produced by:

c = 1.10010010;

a = . 000111001;

b = . 010000;

– cancellation size is 3 bits → 3 additional bits for right term

– compute tan(a) and tan(c) on 1+wF +2+3 bits with 0.5ulp

of accuracy.

Implementation

1. tabulate tan(a) and tan(c):

• tan(c) dynamic range is 2−8 − 211.

– store in floating-point format exponent 5 bits and frac-

tion on wF + 5 bits (explicit ”1” stored)

– total width = 34 bits (M9K has 36-bit, M20K 40-bit)

• tan(a) dynamic range is just 9 positions

– store in fixed-point on 9 + 23 + 5 = 36 + 1 bits

2. computing the numerator: tan(c) + tan(a) + b

• tan(a) and b are in fixed-point format → added directly

• tan(a) + b is aligned to the exponent of tan(c) (max 19-bit

shift), beyond that return tan(c)

• potentially normalize (1-bit)

3. computing the denominator: 1 − (tan(a) + b) tan(c)

• tan(a)+b normalized (in floating-point) is multiplied by tan(c)

• denormalize the product to to fixed-point

• perform a fixed-point subtraction

• normalize (maximum cancellation is 3-bit)

4. compute the denominator inverse + (1-bit max normalize)

5. perform final multiplication + (1-bit max normalize)

6. round to nearest

7. multiplex with other branches:

• if e < −12 return x

• if x > π/2 − 256ulp read output from table

Conclusion

• implement as a fused operator

• exploit FPGA flexibility: exotic formats, fixed-point and

floating-point

• careful error analysis → compute just right
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