
An FPGA-specific Approach to
Floating-Point Accumulation and Sum-of-Products

ICFPT08, 7-10 December 2008

Florent de Dinechin∗, Bogdan Pasca∗, Octavian Cret̊ , Radu Tudoran̊
∗projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon, France

T̊echnical University of Cluj-Napoca, Romania

Outline

Context of this work

Proposed accumulator

Improved sum-of-products

Conclusions

2

Context of this work

Summing a large number of floating-point terms fast and accurately

Crucial for:

Scientific computations:
dot-product, matrix-vector product, matrix-matrix product
numerical integration

Financial simulations:
Monte-Carlo simulations

...

3

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

4

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

4

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

e gives the dynamic range

IEEE-754 FP double precision, emin=-1022 and emax = 1023

number of bits of f gives the precision p

IEEE-754 FP double precision, p=52

4

Not familiar with floating-point arithmetic?

Floating-Point(FP) numbers

Let x be a normalized binary FP number:

x = (−1)S × 1.f × 2e

where:

S - the sign of x

f - the fraction of x .

e - the exponent of x

Graphical representation:

1 wE wF

fS e

asdsad

4

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 1 1 0 1 0 0 0 0 0 01 1x0

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 1 1 0 1 0 0 0 0 0 01 1x0

0 0 0 0 01 1 0 00 0 0 1 1 1 0 1 0 0 0 0 0 01

0 0 0 0 01 1 0 00x0

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point
0 0 0 0 01 1 0 00 0 0 1 1 1 0 1 0 0 0 0 0 01

0 0 0 0 01 1 0 00x0

0 1001 0 0 0 0 00 1 1 1x1

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 1001 0 0 0 0 00 1 1 1x1

0 0 0 0 01 1 11x1 0010 0 001 0

0 0 0 0 01 1 11x1

acc

00 0 0 01011101 0 00010111001001

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

00 0 0 01011101 0 00010111001001

100110000 1 0 1 0 0x2

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

100110000 1 0 1 0 0x2

1 0 0 0 1 1 0 0 1x2

1 1 1 1 100 000

1111 00000x2

acc

111111 00 0 0 0 000 111110 1 0 0 0 0 01 0

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

111111 00 0 0 0 000 111110 1 0 0 0 0 01 0

111101000 1 1 0 1 0x3

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

111101000 1 1 0 1 0x3

01 0 1 0 1 1 1 1x3

011011101

1 00 1 0 1 11 1x3

acc

11110100111011101 1 00100 11101 110

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

01 0 1 0 1 1 1 1x3

11110100111011101 1 00100 11101 110

001001011 0 0 0 00x4

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Infinitely accurate accumulator

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

01 0 1 0 1 1 1 1x3

001001011 0 0 0 00x4

1 1 0 1 0 0 1 0 0x4

1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc

11 1 10110100010011 100010011 1 0000

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

01 0 1 0 1 1 1 1x3

1 1 0 1 0 0 1 0 0x4

1 1 0 1 0 0 1 0 0

110 1110 11

x4

acc

11 1 10110100010011 100010011 1 0000

0 1 0 1 0 10 1 01 0 1 00

fixed point

x5

Finite accuracy fixed−point accumulator

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

01 0 1 0 1 1 1 1x3

1 1 0 1 0 0 1 0 0x4

0 1 0 1 0 10 1 01 0 1 00

fixed point

x5

Finite accuracy fixed−point accumulator

0011101 01x5

1 1 0 0 01 0 0 1

1 10 1 1 0 0 1 0x5

acc

010111001100010011 100010010 1 0 1 00

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Accumulation

Addend

Floating−point accumulator

Accumulator floating point

0 0 0 0 01 1 0 00x0

0 0 0 0 01 1 11x1

1 0 0 0 1 1 0 0 1x2

01 0 1 0 1 1 1 1x3

1 1 0 1 0 0 1 0 0x4

0 1 0 1 0 10 1 01 0 1 00

fixed point

x5

Finite accuracy fixed−point accumulator

0011101 01x5

1 1 0 0 01 0 0 1

1 10 1 1 0 0 1 0x5

acc

010111001100010011 100010010 1 0 1 00

Summands (shifted significands) Summands (shifted significands)

Accuracy:

Exact Result = 50.2017822265625
FP Acc = 50.125
Fixed-Point Acc = 50.20166015625

5

Closer look

Accumulator based on combinatorial floating-point adder

very low frequency

must pipeline for larger frequency

6

Closer look

k

number
of loop

pipeline
levels

Accumulator based on pipelined floating-point adder

loop’s critical path contains 2 shifters

shifters are deeply pipelined

produces k accumulation results

these results have to be added somehow

adder tree
multiplexing mechanism on accumulation loop

6

Closer look

Accumulator based on proposed long accumulator

no shifts on the loop’s critical path

returns the result of the accumulation in fixed point

the alignment shifter pipeline depth does not concern the result

6

Accumulator Architecture

L
o
n
g
A
c
c

wA

shift value

mantissa

carry in

MaxMSBX − LSBA + 1

MaxMSBX

exponent

wE wF

sign

fixed-point sum

registers

Input Shifter

1’s complement

the sum is kept as a large fixed-point number

one alignment shift (size depends on MaxMSBX and LSBA)

the loop’s critical path contains a fixed-point addition

fixed-point addition is fast on current FPGAs

7

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

8

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

8

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

8

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

8

Fast Accumulator Design

The accumulator should run at a target frequency

64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to
fast-carry chains

still not enough ?

use partial carry-save representation

cut large carry-propagation into chunks of k bits
critical path = k-bit addition
small cost: bwidthaccumulator/kc registers

shifters can be arbitrarily pipelined for a given frequency

8

We advocate:

An application tailored fixed-point accumulator
for floating-point inputs

Ensuring that:

1. accumulator significand never needs to be shifted

2. it never overflows

3. provides a result as accurate as the application requires

9

Accumulator Parameters

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

10

Accumulator Parameters

MSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

10

Accumulator Parameters

MaxMSBXMSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

10

Accumulator Parameters

LSBAMaxMSBXMSBA

MSBA the weight of the MSB of the accumulator

must to be larger than max. expected result

MaxMSBX the max. weight of the MSB of the summand

LSBA weight of the LSB of the accumulator

determines the final accumulation accuracy

The designer must provide values for these parameters.

10

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Application Tailored

Application dictates parameter values

Two possibilities:

software profiling + safety margins
rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

MSBA know an actual maximum + 10 bits safety margin
consider the number of terms to sum

MaxMSBX exploit input properties + safety margin
worst case: MaxMSBX = MSBA

LSBA precision vs. performance
consider the desired final precision
sum n terms, at most log2 n bits are invalid

LSBAMaxMSBXMSBA

log2n

11

Post-normalization unit, or not

L
o
n
g
A
c
c
2
F
P

mantissa signexponent

fixed-point sum

w ′F

wA

w ′E

carry propagation

LZC + shifter

2’s complement

converts fixed-point accumulator format to floating-point

pipelined unit may be shared by several accumulators

less useful:

many applications do not need the running sum
better to do conversion in software, use FPGA to accelerate the
computation

12

Performance results

800

1000

1200

1400

1600

1800

Slice Usage

3
DSP
3

DSP

2fp
2fp

?
?

2fp

2fp

0

200

400

600

(wE=7,wF=16) (wE=8,wF=23) (wE=10,wF=37) (wE=11,wF=52)

CoreGen FPAdder

2*wF Accumulator, MaxMSBX=1

2*wF Accumulator, MaxMSBX=MSBA

1
DSP
?1

DSP
?

2fp
2fp

2fp
2fp

?

2fp?

13

Performance results

8

10

12

14

16

18

Latency

0

2

4

6

(wE=7,wF=16) (wE=8,wF=23) (wE=10,wF=37) (wE=11,wF=52)

CoreGen FPAdder

2*wF Accumulator, MaxMSBX=1

2*wF Accumulator, MaxMSBX=MSBA

13

Relative error results

‐4

‐3

‐2

‐1

0
1,000 10,000 100,000 1,000,000

)

Relative Error

‐10

‐9

‐8

‐7

‐6

‐5

4

lo
g(
Er
ro
r)

FPAdder LongAcc

Accumulation of FP(wE = 7,wF = 16) in unif. [0,1]

LongAcc (MSBA = 20, LSBA = −11)

14

Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

1. Use exact multipliers:

return all the bits of the exact product
contain no rounding logic
are cheaper to build

2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large

15

Operator Performance

1200

1400

1600

1800

2000

2200

2400

Slices

longAcc2fp

?

+

0

200

400

600

800

1000

1200

SP x, SP + | SP x, DP acc DP x, DP +| DP x, 105‐bit acc

CoreGen LongAcc

longAcc2fp

?

+
8 DSP +

4 DSP

+
19 DSP

9 DSP

16

Operator Performance

25

30

35

40

45

Latency

longAcc2fp

longAcc2fp

?

?

0

5

10

15

20

SP x, SP + | SP x, DP acc DP x, DP +| DP x, 105‐bit acc

CoreGen LongAcc

16

Operator Accuracy

‐15

‐10

‐5

0

1,000 10,000 100,000 1,000,000

or
)

Relative Error

‐35

‐30

‐25

‐20lo
g(
Er
ro

Number of summands

CoreGen DP x, DP +

ours, DP x, acc(LSBA=‐106, MSBA=20, MaxMSBX=1)

17

Conclusion

floating-point on FPGA should use the flexibility of the FPGA,
not reimplement operators available in microprocessors

faster and arbitrarily more accurate than a naive floating-point
approach

cost: designer-provided bounds on the accumulated values

reward: improved performance + provably accurate accumulation

available under GPL at:
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

18

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Thank you for your attention !

Thank you for your attention !
Questions ?

19

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

Absolute and Relative Error

measuring only absolute error is not enough

the errorabsolute = |x − x̃ |
example 1
x=18234129837128312.192387123987
x̃=18234129837128312.192387123986
errorabsolute = 1e − 12
example 2
x=0.192387123987
x̃=0.192387123986
errorabsolute = 1e − 12

better measure relative error (percentage error)

errorrel = x̃−x
x

example 1: errorrel = −5e − 29
example 2: errorrel = −5e − 12

20

	Context of this work
	Proposed accumulator
	Improved sum-of-products
	Conclusions

