An FPGA-specific Approach to Floating-Point Accumulation and Sum-of-Products

ICFPT08, 7-10 December 2008

Florent de Dinechin*, Bogdan Pasca*, Octavian Cret°, Radu Tudoran° *projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon, France °Technical University of Cluj-Napoca, Romania

Outline

Context of this work

Proposed accumulator

Improved sum-of-products

Conclusions

Context of this work

Summing a large number of floating-point terms fast and accurately

Crucial for:

• Scientific computations:

- dot-product, matrix-vector product, matrix-matrix product
- numerical integration

• Financial simulations:

Monte-Carlo simulations

Floating-Point(FP) numbers

Let x be a **normalized** binary FP number:

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- S the sign of x
- f the **fraction** of x.
- e the **exponent** of x

Floating-Point(FP) numbers

Let x be a **normalized** binary FP number:

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- S the sign of x
- f the **fraction** of x.
- e the **exponent** of x
- e gives the dynamic range
 - IEEE-754 FP double precision, e_{min} =-1022 and $e_{max} = 1023$
- number of bits of f gives the **precision** p
 - IEEE-754 FP double precision, p=52

Floating-Point(FP) numbers

Let x be a **normalized** binary FP number:

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- S the sign of x
- f the **fraction** of x.
- e the **exponent** of x
- e gives the dynamic range
 - IEEE-754 FP double precision, e_{min} =-1022 and $e_{max} = 1023$
- number of bits of f gives the precision p
 - IEEE-754 FP double precision, p=52

Floating-Point(FP) numbers

Let x be a **normalized** binary FP number:

$$x = (-1)^S \times 1.f \times 2^e$$

where:

- S the sign of x
- f the fraction of x.
- e the **exponent** of x

Graphical representation:

	Addend		
Summands (shifted significands) Accumulator		Summands (shifted significands)	
Infinitely accurate accu	mulator	Floating-point accumulator	

	x0 Addend	0 0 1 1 1 1 0	100000		
Summands (shifted significands) <u>Accumulator</u>		Summands (s	shifted significands) oint		
Infinitely accurate accu	mulator		Floating-point	accumulator	

x0 00 Addend	. 1 1 1 0 1 0 0 0 0 0 0
x0 <u>1010000</u>	
Summands (shifted significands) Accumulator 100100000	Summands (shifted significands) floating point 0 0 1 1 1 1 0 1 0 0 0 0 0 0
Infinitely accurate accumulator	Floating-point accumulator

x1 0 1 0 0 1 0 Addend	2 0 1 0 0 1 1 0 0
x0 <u>1010000</u>	
Summands (shifted significands) Accumulator	Summands (shifted significands) floating point 0011110100000
Infinitely accurate accumulator	Floating-point accumulator

Accuracy:

Exact Result	=	50.2017822265625
FP Acc	=	50.125
Fixed-Point Acc	=	50.20166015625

Closer look

Accumulator based on combinatorial floating-point adder

- very low frequency
- must pipeline for larger frequency

Closer look

Accumulator based on pipelined floating-point adder

- loop's critical path contains 2 shifters
- shifters are deeply pipelined
- produces k accumulation results
- these results have to be added somehow
 - adder tree
 - multiplexing mechanism on accumulation loop

Closer look

Accumulator based on proposed long accumulator

- no shifts on the loop's critical path
- returns the result of the accumulation in fixed point
- the alignment shifter pipeline depth does not concern the result

Accumulator Architecture

- the sum is kept as a large fixed-point number
- one alignment shift (size depends on MaxMSB_X and LSB_A)
- the loop's critical path contains a fixed-point addition
- fixed-point addition is fast on current FPGAs

The accumulator should run at a target frequency

The accumulator should run at a target frequency

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: [width_{accumulator}/k] registers

The accumulator should run at a target frequency

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: [width_{accumulator}/k] registers

The accumulator should run at a target frequency

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: $\lfloor width_{accumulator}/k \rfloor$ registers

The accumulator should run at a target frequency

- 64-bit addition works at 220MHz on Xilinx Virtex4 FPGA due to fast-carry chains
- still not enough ?
- use partial carry-save representation
 - cut large carry-propagation into chunks of k bits
 - critical path = k-bit addition
 - small cost: $\lfloor width_{accumulator}/k \rfloor$ registers

An **application tailored** fixed-point accumulator for **floating-point inputs**

Ensuring that:

- 1. accumulator significand never needs to be shifted
- 2. it never overflows
- 3. provides a result as accurate as the application requires

MSB_A the weight of the MSB of the accumulator
 must to be larger than max. expected result
 MaxMSB_X the max. weight of the MSB of the summand
 LSB_A weight of the LSB of the accumulator
 determines the final accumulation accuracy

MSB_A the weight of the MSB of the accumulator
 must to be larger than max. expected result
 MaxMSB_X the max. weight of the MSB of the summand
 LSB_A weight of the LSB of the accumulator
 determines the final accumulation accuracy

MSB_A the weight of the MSB of the accumulator
 must to be larger than max. expected result
 MaxMSB_X the max. weight of the MSB of the summand
 LSB_A weight of the LSB of the accumulator
 determines the final accumulation accuracy

Application dictates parameter values

Application dictates parameter values

Two possibilities:

- **software profiling** + safety margins
- rough error analysis + safety margins

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum

$MaxMSB_X$ • exploit input properties + safety margin

- worst case: $MaxMSB_X = MSB_A$
- LSB_A precision vs. performance
 - consider the desired final precision
 - sum *n* terms, at most log₂ *n* bits are invalid

Application dictates parameter values

Two possibilities:

- software profiling + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum
- $MaxMSB_X$ exploit input properties + safety margin
 - worst case: $MaxMSB_X = MSB_A$
 - LSB_A precision vs. performance
 - consider the desired final precision
 - sum *n* terms, at most log₂ *n* bits are invalid

Application dictates parameter values

Two possibilities:

- **software profiling** + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum
- $MaxMSB_X$ exploit input properties + safety margin
 - worst case: $MaxMSB_X = MSB_A$

LSB_A precision vs. performance

- consider the desired final precision
- sum n terms, at most log₂ n bits are invalid

Application dictates parameter values

Two possibilities:

- **software profiling** + safety margins
- rough error analysis + safety margins

How to chose the parameters using the rough error analysis ?

- MSB_A know an actual maximum + 10 bits safety margin
 - consider the number of terms to sum
- $MaxMSB_X$ exploit input properties + safety margin
 - worst case: $Ma \times MSB_X = MSB_A$

LSB_A precision vs. performance

- consider the desired final precision
- sum *n* terms, at most log₂ *n* bits are invalid MSB_A MaxMSB_X LSB_A LSB_A

Post-normalization unit, or not

converts fixed-point accumulator format to floating-point

- pipelined unit may be shared by several accumulators
- less useful:
 - many applications do not need the running sum
 - better to do conversion in software, use FPGA to accelerate the computation

Performance results

Performance results

Relative error results

Accumulation of $FP(w_E = 7, w_F = 16)$ in unif. [0,1] • LongAcc ($MSB_A = 20$, $LSB_A = -11$)

Accurate Sum-of-Products

Ideea

Accumulate exact results of all multiplications

- 1. Use exact multipliers:
 - return all the bits of the exact product
 - contain no rounding logic
 - are cheaper to build
- 2. Feed the accumulator with exact multiplication results

Cost: Input shifter of accumulator is twice as large

Operator Performance

Operator Performance

Operator Accuracy

Conclusion

- floating-point on FPGA should use the flexibility of the FPGA, not reimplement operators available in microprocessors
- faster and arbitrarily more accurate than a naive floating-point approach
- cost: designer-provided bounds on the accumulated values
- reward: improved performance + provably accurate accumulation
- available under GPL at: http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Thank you for your attention !

Thank you for your attention ! Questions ?

• measuring only absolute error is not enough

• the error_{absolute} = $|x - \tilde{x}|$

example 1

x = 18234129837128312.192387123987 $\tilde{x} = 18234129837128312.192387123986$ $error_bankers = 1e - 12$

• example 2

 $\tilde{x} = 0.192307123986$

• better measure **relative error** (percentage error)

• $error_{rel} = \frac{\tilde{x} - x}{x}$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} = $|x - \tilde{x}|$

• example 1

x=18234129837128312.192387123987 \tilde{x} =18234129837128312.192387123986

 $error_{absolute} = 1e - 12$

• example 2

x = 0.192387123987

x=0.192387123986

 $error_{absolute} = 1e - 12$

• better measure relative error (percentage error)

• $error_{rel} = \frac{\tilde{x} - x}{x}$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} =
$$|x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

• $error_{rel} = \frac{\tilde{x} - x}{x}$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} =
$$|x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

• error_{rel} = $\frac{\tilde{x}-x}{x}$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} =
$$|x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

• error_{rel} = $\frac{\tilde{x}-x}{x}$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} =
$$|x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

• error_{rel} =
$$\frac{\tilde{x}-x}{x}$$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the error_{absolute} =
$$|x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

•
$$error_{rel} = \frac{\tilde{x} - x}{x}$$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$

• measuring only absolute error is not enough

• the
$$error_{absolute} = |x - \tilde{x}|$$

- example 1 x=18234129837128312.192387123987 $\tilde{x}=18234129837128312.192387123986$ $error_{absolute} = 1e - 12$ • example 2 x=0.192387123987 $\tilde{x}=0.192387123986$ $error_{absolute} = 1e - 12$
- better measure relative error (percentage error)

•
$$error_{rel} = \frac{\tilde{x} - x}{x}$$

- example 1: $error_{rel} = -5e 29$
- example 2: $error_{rel} = -5e 12$