Correctly rounded floating-point division for DSP-enabled FPGAs

Bogdan Pasca FPL 29-31 August 2012

Outline

Background

- Floating-point division
- Division algorithms

Faithfully rounded dividers

- Error analysis walk-through
- Implementation discussion

3 Correctly rounded dividers

- Obtaining correctly rounded dividers
- The cost of correct rounding

Results

Conclusion

Outline

Background

- Floating-point division
- Division algorithms

- Error analysis walk-through
- Implementation discussion

- Obtaining correctly rounded dividers
- The cost of correct rounding

Let x,y floating-point numbers in format $\mathbb{F}_{\mathsf{w}_\mathsf{E},\mathsf{w}_\mathsf{F}}$ with :

•
$$x = (-1)^{s_x} 2^{e_x} 1.f_x$$

• $y = (-1)^{s_y} 2^{e_y} 1.f_y$
Let :

$$q = rac{x}{y} = (-1)^{s_x \oplus s_y} 2^{e_x - e_y} rac{1.f_x}{1.f_y}$$

where $Q = rac{X}{Y} = rac{1.f_x}{1.f_y} \in (1/2, 2)$

Let x, y floating-point numbers in format \mathbb{F}_{w_E, w_F} with :

•
$$x = (-1)^{s_x} 2^{e_x} 1.f_x$$

• $y = (-1)^{s_y} 2^{e_y} 1.f_y$
.et :

$$q = rac{x}{y} = (-1)^{s_x \oplus s_y} 2^{e_x - e_y} rac{1.f_x}{1.f_y}$$

where $Q = rac{X}{Y} = rac{1.f_x}{1.f_y} \in (1/2, 2)$

Fixed-point division is the core of floating-point implementation

- correctly rounded
- long lantency $\mathcal{O}(wF)$
- negative routing impact

- correctly rounded
- long lantency $\mathcal{O}(wF)$
- negative routing impact

• Functional iterations for approximating 1/Y

- Newton-Raphson or Goldschmidt
- start with an initial low accuracy approximation
- quadratic convergence
- require multipliers and memories

- correctly rounded
- long lantency $\mathcal{O}(wF)$
- negative routing impact

• Functional iterations for approximating $1/{\it Y}$

- Newton-Raphson or Goldschmidt
- start with an initial low accuracy approximation
- quadratic convergence
- require multipliers and memories

• Polynomial approximation for 1/Y

- general technique
- piecewise-polynomial approximation for range-reduction

- correctly rounded
- long lantency $\mathcal{O}(wF)$
- negative routing impact

• Functional iterations for approximating $1/{\it Y}$

- Newton-Raphson or Goldschmidt
- start with an initial low accuracy approximation
- quadratic convergence
- require multipliers and memories

• Polynomial approximation for 1/Y

- general technique
- piecewise-polynomial approximation for range-reduction

Combining techniques

Use polynomial approx. for initial approximation, then functional iterations

Bogdan Pasca (ALTERA)

Outline

- Floating-point division
- Division algorithms

Faithfully rounded dividers

- Error analysis walk-through
- Implementation discussion

Correctly rounded dividers

- Obtaining correctly rounded dividers
- The cost of correct rounding

4 Results

5 Conclusion

Faithful and correct rounding

Let :

- x, y be two floating-point numbers and
- $q^* = \frac{x}{y}$ be the infinitely accurate quotient.

Faithfully rounded dividers Faithful and correct rounding

Let :

- x, y be two floating-point numbers and
- $q^* = \frac{x}{y}$ be the infinitely accurate quotient.

The IEEE-754 Standard for Floating-Point Arithmetic : $q = \circ(q^*)$

- directed rounding modes + round to nearest mode (2)
- round to nearest, tie breaks to even most used

Faithfully rounded dividers Faithful and correct rounding

Let :

- x, y be two floating-point numbers and
- $q^* = \frac{x}{y}$ be the infinitely accurate quotient.

The IEEE-754 Standard for Floating-Point Arithmetic : $q = \circ(q^*)$

- directed rounding modes + round to nearest mode (2)
- round to nearest, tie breaks to even most used

Faithfully rounded result requires :

$$E_{\text{total}} = E_{\text{round}} + E_{\text{approx}} \leq 1 u l p$$

Faithfully rounded result requires :

$$E_{ ext{total}} = E_{ ext{round}} + E_{ ext{approx}} \leq 1 u l p$$

- E_{round} packing the result to the output format. (1/2ulp for RN)
- *E*_{approx}- sums the method and computational errors. (must be bounded by 1/2ulp)

Sequence of operations for fixed-point division :

Infinitely accurateImplemented operationsZ = 1/Y $Z' = \circ(1/Y)$ $Q = Z \times X$ $Q' = Z' \times X$

Sequence of operations for fixed-point division :

Infinitely accurateImplemented operationsZ = 1/YZ' = o(1/Y) $Q = Z \times X$ $Q' = Z' \times X$

The approximation error E_{approx} :

$$egin{aligned} Q-Q'|&=|ZX-Z'X|\ &=|(Z-Z')X|\ &\leq |Z-Z'||X| \end{aligned}$$

Sequence of operations for fixed-point division :

Infinitely accurateImplemented operationsZ = 1/YZ' = o(1/Y) $Q = Z \times X$ $Q' = Z' \times X$

The approximation error $\overline{E_{\text{approx}}}$:

$$egin{aligned} Q-Q'|&=|ZX-Z'X|\ &=|(Z-Z')X|\ &\leq |Z-Z'||X| \end{aligned}$$

• as $X \in [1,2) \rightarrow |Z - Z'| \leq 1/4$ ulp but $Z \in (1/2,1]$ so a faithful approximation on wF+3 bits is required.

Error analysis walk-through

Higher precisions allow saving DSPs using a truncated multiplier :

$$Z' = \circ(1/Y)$$
$$P' = Z' \times X$$
$$Q' = trunc(P')$$

Error analysis walk-through

Higher precisions allow saving DSPs using a truncated multiplier :

$$Z' = \circ(1/Y)$$
$$P' = Z' \times X$$
$$Q' = trunc(P')$$

The approximation error E_{approx} : |Q - Q'| = |ZX - trunc(P')| = |ZX - Z'X + Z'X - trunc(Z'X)| = |(Z - Z')X + truncerror for Z'X| $\leq |Z - Z'||X| + |truncerror for Z'X|$

Error analysis walk-through

Higher precisions allow saving DSPs using a truncated multiplier :

$$Z' = \circ(1/Y)$$
$$P' = Z' \times X$$
$$Q' = trunc(P')$$

The approximation error E_{approx} : |Q - Q'| = |ZX - trunc(P')| = |ZX - Z'X + Z'X - trunc(Z'X)| = |(Z - Z')X + truncerror for Z'X| $\leq |Z - Z'||X| + |truncerror for Z'X|$

- faithful approx. on wF + 4 for Z'
- faithful multiplier on wF + 3 for Z'X.

Bogdan Pasca (ALTERA)

Single-precision implementation using Newton-Raphson for Z

The Newton-Raphson iteration :

$$Z_{n+1} = 2Z_n - Z_n^2 Y$$

Two solutions :

- bootstrap with Z_0 accurate to 2^{-14}
 - preform one iteration : $Z_1 = 2Z_0 Z_0^2 Y$
 - 6M20K (StratixV)/ 13M10K (AriaV/CycloneV) + 2DSPs + logic

Single-precision implementation using Newton-Raphson for Z

The Newton-Raphson iteration :

$$Z_{n+1} = 2Z_n - Z_n^2 Y$$

Two solutions :

• bootstrap with Z_0 accurate to 2^{-14}

- preform one iteration : $Z_1 = 2Z_0 Z_0^2 Y$
- 6M20K (StratixV)/ 13M10K (AriaV/CycloneV) + 2DSPs + logic
- bootstrap with Z_0 accurate to 2^{-10}

• perform two iterations :

$$Z_1 = 2Z_0 - Z_0^2 Y$$
$$Z_2 = 2Z_1 - Z_1^2 Y$$

- 1M20K/1M10K + 4DSPs + logic
- has a longer latency

Double-precision implementation using Newton-Raphson for Z

Two solutions :

- bootstrap Z_0 accurate to 2^{-15}
 - perform two iterations, Z_1 , Z_2
 - large memory requirement

Double-precision implementation using Newton-Raphson for Z

Two solutions :

2

- bootstrap Z_0 accurate to 2^{-15}
 - perform two iterations, Z_1 , Z_2
 - large memory requirement
 - bootstrap with Z_0 accurate to 2^{-10}
 - perform 3 iterations (several optimizations possible)
 - $Z_1 = 2Z_0 Z_0^2 Y$ 10-bit squarer + 20x53 mult. \rightarrow 20 x 27 (1 DSP)
 - $Z_2 = 2Z_1 Z_1^2 Y$ 20-bit squarer + 40x53 mult. (4 DSPs but can be red. to 3)
 - $Z_3 = 2Z_2 Z_2^2 Y$ 40-bit squarer (3DSPs) + 54x53 mult (4DSPs)
 - 14 DSPs + 1 memory block for the inverse

Implementation using Polynomial Approximation

Single-precision

- degree 2 polynomial on 256 subintervals : 1 M20K, 2M10K
- 2 DSPs

Implementation using Polynomial Approximation

Single-precision

- degree 2 polynomial on 256 subintervals : 1 M20K, 2M10K
- 2 DSPs

Double-precision :

- degree 5 poly. on 256 subintervals 6M10K on AriaV/CycloneV
- degree 4 poly. on 1K subintervals 19M20K on StratixV
- truncated datapath (6DSPs + logic)

Implementation using combined techniques

For double precision :

- start with initial polynomial approx. 2^{-28}
 - degree 2 poly. 2M20K/4M10K.
 - 2 DSPs
- perform one Newton-Raphson iteration
 - 28-bit squarer (1 DSP + logic)
 - $56 \times 53 \rightarrow 56$ (3 DSPs + logic)

Same number of DSPs as polynomial approximation, less memory blocks.

Outline

• Floating-point division

Division algorithms

Faithfully rounded dividers

- Error analysis walk-through
- Implementation discussion

3 Correctly rounded dividers

- Obtaining correctly rounded dividers
- The cost of correct rounding

Results

Conclusion

Technique :

- compute $\tilde{d} = x/y$ faithfully rounded on $w_F + 1$ fraction bits
- with respect to the target wF format, \tilde{d} is either a FP number, or a midpoint.

Technique :

- compute $\tilde{d} = x/y$ faithfully rounded on $w_F + 1$ fraction bits
- with respect to the target wF format, \tilde{d} is either a FP number, or a midpoint.

• if \tilde{d} is a FP in wF format, then is the correct result

Technique :

- compute $\tilde{d} = x/y$ faithfully rounded on $w_F + 1$ fraction bits
- with respect to the target wF format, \tilde{d} is either a FP number, or a midpoint.

- if \tilde{d} is a FP in wF format, then is the correct result
- if \tilde{d} is a midpoint, then compute $\tilde{d} * y$ and compare with x.
 - if $\tilde{d} * y > x$ then return $trunc(\tilde{d})$
 - else return \tilde{d} + ulp.

Technique :

- compute $\tilde{d} = x/y$ faithfully rounded on $w_F + 1$ fraction bits
- with respect to the target wF format, \tilde{d} is either a FP number, or a midpoint.

- if \tilde{d} is a FP in wF format, then is the correct result
- if \tilde{d} is a midpoint, then compute $\tilde{d} * y$ and compare with x.
 - if $\tilde{d} * y > x$ then return $trunc(\tilde{d})$
 - else return \tilde{d} + ulp.

Technical detail for optimizing the computation is in the paper

The cost of correct rounding

Requires :

- 0 a faithful division on wF+1 bits and
 - the combined techniques : 29-bit initial approx.
- **2** product $\tilde{d}_{wF+1} \times y$ with only the LSB wF+3 bits.
- integer subtraction (making good use of internal adders)

Outline

- Floating-point division
- Division algorithms

- Error analysis walk-through
- Implementation discussion

- Obtaining correctly rounded dividers
- The cost of correct rounding

Results

Results

PA(d) = Polynomial Approximation of degree d NR = Newton-Raphson iteration R4 DR = Radix-4 Digit Recurrence

Algorithm	Acc.	Published	FPGA	Freq., Lat., Resources
R4 DR	CR	FloPoCo		233MHz, 16, 1210ALUT, 1308REG
PA(2)	FR	ours	StratixV	400MHz, 11, 274ALUT, 291REG, 2M20K, 3DSP
	CR			400MHz, 15, 426Alut, 408reg, 2m20k, 4dsp
Goldberg itera-	CR	[1]	StratixII	131MHz, 11/8, 5800Alut, 3592Alm+12 M20K
tions + Booth				
Radix-8 Mult.				
R4 DR	CR	FloPoCo		219MHz, 36, 5209ALUT, 5473REG
-		FP_DIV	1	196MHz, 24, 810ALUT, 1629REG, 9M20K, 14DSP
PA(4)			Strati×V	380MHz, 33, 1113ALUT, 1825REG, 10M20K, 9DSP
PA(2) + NR	FR	ours	1	268MHz, 18, 887ALUT, 823REG, 2M20K, 9DSP
PA(2) + NR				400MHz, 25, 947ALUT, 1296REG, 2M20K, 9DSP
Multiplicative	2ulp	[2]	VII-Pro	275MHz, 36, 2097SLICE, 1 18KBRAM, 28DSP

[1] R. Goldberg, G. Even, and P.-M. Seidel, "An FPGA implementation of pipelined multiplicative division with IEEE rounding", FCCM 2007

[2] M. K. Jaiswal and R. C. C. Cheung, "High performance reconfigurable architecture for double precision floating point division", ARC 2012

Bogdan Pasca (ALTERA)

Correctly rounded floating-point division

Outline

Floating-point division

• Division algorithms

Faithfully rounded dividers

- Error analysis walk-through
- Implementation discussion

Correctly rounded dividers

- Obtaining correctly rounded dividers
- The cost of correct rounding

Results

5 Conclusion

- approximation-based techniques provide fast and resource-balanced implementations
- correctly-rounded dividers obtained at reduced cost
- faithfully accurate divider (wF + 1 bits) == correctly rounded on wF bits
- IEEE-754 compliance is impossible if elementary functions are used : faithful dividers allow reducing implementation cost.
- divider architectures : available via *Altera DSP Builder Advanced blockset* but also used by the Altera OpenCL initiative.