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Background
Floating-point division

Let x , y floating-point numbers in format FwE,wF
with :

x = (−1)sx 2ex 1.fx

y = (−1)sy 2ey 1.fy

Let :

q =
x

y
= (−1)sx⊕sy 2ex−ey

1.fx
1.fy

where Q =
X

Y
=

1.fx
1.fy
∈ (1/2, 2)

Fixed-point division is the core of floating-point implementation
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Background
Division algorithms

Digit-recurrence algorithms
correctly rounded
long lantency O(wF )
negative routing impact

Functional iterations for approximating 1/Y

Newton-Raphson or Goldschmidt
start with an initial low accuracy approximation
quadratic convergence
require multipliers and memories

Polynomial approximation for 1/Y

general technique
piecewise-polynomial approximation for range-reduction

Combining techniques

Use polynomial approx. for initial approximation, then functional iterations
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Faithfully rounded dividers
Faithful and correct rounding

Let :

x , y be two floating-point numbers and

q∗ = x
y be the infinitely accurate quotient.

The IEEE-754 Standard for Floating-Point Arithmetic : q = ◦(q∗)
directed rounding modes + round to nearest mode (2)

round to nearest, tie breaks to even - most used

floating−point numbers

even

FR − faithful rounding
CR − correct rounding

ulp

CR

FR FR

CRCR
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Faithfully rounded dividers
Error analysis walk-through

Faithfully rounded result requires :

Etotal = Eround + Eapprox ≤ 1ulp

Eround- packing the result to the output format. (1/2ulp for RN)

Eapprox- sums the method and computational errors. (must be
bounded by 1/2ulp)
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Faithfully rounded dividers
Error analysis walk-through

Sequence of operations for fixed-point division :

Infinitely accurate Implemented operations
Z = 1/Y
Q = Z × X

Z ′ = ◦(1/Y )
Q ′ = Z ′ × X

The approximation error Eapprox :

|Q − Q ′| = |ZX − Z ′X |
= |(Z − Z ′)X |
≤ |Z − Z ′||X |

as X ∈ [1, 2)→ |Z − Z ′| ≤ 1/4ulp but Z ∈ (1/2, 1] so a faithful
approximation on wF+3 bits is required.
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Faithfully rounded dividers
Error analysis walk-through

Higher precisions allow saving DSPs using a truncated multiplier :

Z ′ = ◦(1/Y )

P ′ = Z ′ × X

Q ′ = trunc(P ′)

The approximation error Eapprox :

|Q − Q ′| = |ZX − trunc(P ′)|
= |ZX − Z ′X + Z ′X − trunc(Z ′X )|
= |(Z − Z ′)X + truncerrorforZ ′X |
≤ |Z − Z ′||X |+ |truncerrorforZ ′X |

faithful approx. on wF + 4 for Z’
faithful multiplier on wF + 3 for Z’X.
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Faithfully rounded dividers
Single-precision implementation using Newton-Raphson for Z

The Newton-Raphson iteration :

Zn+1 = 2Zn − Z 2
nY

Two solutions :
1 bootstrap with Z0 accurate to 2−14

preform one iteration : Z1 = 2Z0 − Z 2
0 Y

6M20K (StratixV)/ 13M10K (AriaV/CycloneV) + 2DSPs + logic

2 bootstrap with Z0 accurate to 2−10

perform two iterations :

Z1 = 2Z0 − Z 2
0 Y

Z2 = 2Z1 − Z 2
1 Y

1M20K/1M10K + 4DSPs + logic
has a longer latency
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Faithfully rounded dividers
Double-precision implementation using Newton-Raphson for Z

Two solutions :
1 bootstrap Z0 accurate to 2−15

perform two iterations, Z1, Z2

large memory requirement

2 bootstrap with Z0 accurate to 2−10

perform 3 iterations (several optimizations possible)

Z1 = 2Z0 − Z 2
0 Y 10-bit squarer + 20x53 mult. → 20 x 27 (1 DSP)

Z2 = 2Z1 − Z 2
1 Y 20-bit squarer + 40x53 mult. (4 DSPs but can be red.

to 3)
Z3 = 2Z2 − Z 2

2 Y 40-bit squarer (3DSPs) + 54x53 mult (4DSPs)

14 DSPs + 1 memory block for the inverse
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Faithfully rounded dividers
Implementation using Polynomial Approximation

Single-precision

degree 2 polynomial on 256 subintervals : 1 M20K, 2M10K

2 DSPs

Double-precision :

degree 5 poly. on 256 subintervals 6M10K on AriaV/CycloneV

degree 4 poly. on 1K subintervals 19M20K on StratixV

truncated datapath (6DSPs + logic)

42x50−>5138x40−>4029x31−>3018x18−>20

27x27 27x27 27x27

18x18

18x18

18x18

18x18

Horner Evaluation
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Faithfully rounded dividers
Implementation using combined techniques

For double precision :

start with initial polynomial approx. 2−28

degree 2 poly. 2M20K/4M10K.
2 DSPs

perform one Newton-Raphson iteration

28-bit squarer (1 DSP + logic)
56× 53→ 56 (3 DSPs + logic)

Same number of DSPs as polynomial approximation, less memory blocks.
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Correctly rounded dividers
Obtaining correctly rounded dividers

Technique :

compute d̃ = x/y faithfully rounded on wF + 1 fraction bits

with respect to the target wF format, d̃ is either a FP number, or a
midpoint.

precision wF precision wF + 1

CR

FRFR

CR

FRFR

if d̃ is a FP in wF format, then is the correct result

if d̃ is a midpoint, then compute d̃ ∗ y and compare with x .

if d̃ ∗ y > x then return trunc(d̃)
else return d̃ + ulp.

Technical detail for optimizing the computation is in the paper

Bogdan Pasca (ALTERA) Correctly rounded floating-point division August 30, 2012 16 / 21



Correctly rounded dividers
Obtaining correctly rounded dividers

Technique :

compute d̃ = x/y faithfully rounded on wF + 1 fraction bits

with respect to the target wF format, d̃ is either a FP number, or a
midpoint.

precision wF precision wF + 1

CR

FRFR

CR

FRFR

if d̃ is a FP in wF format, then is the correct result

if d̃ is a midpoint, then compute d̃ ∗ y and compare with x .

if d̃ ∗ y > x then return trunc(d̃)
else return d̃ + ulp.

Technical detail for optimizing the computation is in the paper

Bogdan Pasca (ALTERA) Correctly rounded floating-point division August 30, 2012 16 / 21



Correctly rounded dividers
Obtaining correctly rounded dividers

Technique :

compute d̃ = x/y faithfully rounded on wF + 1 fraction bits

with respect to the target wF format, d̃ is either a FP number, or a
midpoint.

precision wF precision wF + 1

CR

FRFR

CR

FRFR

if d̃ is a FP in wF format, then is the correct result

if d̃ is a midpoint, then compute d̃ ∗ y and compare with x .

if d̃ ∗ y > x then return trunc(d̃)
else return d̃ + ulp.

Technical detail for optimizing the computation is in the paper

Bogdan Pasca (ALTERA) Correctly rounded floating-point division August 30, 2012 16 / 21



Correctly rounded dividers
Obtaining correctly rounded dividers

Technique :

compute d̃ = x/y faithfully rounded on wF + 1 fraction bits

with respect to the target wF format, d̃ is either a FP number, or a
midpoint.

precision wF precision wF + 1

CR

FRFR

CR

FRFR

if d̃ is a FP in wF format, then is the correct result

if d̃ is a midpoint, then compute d̃ ∗ y and compare with x .

if d̃ ∗ y > x then return trunc(d̃)
else return d̃ + ulp.

Technical detail for optimizing the computation is in the paper

Bogdan Pasca (ALTERA) Correctly rounded floating-point division August 30, 2012 16 / 21



Correctly rounded dividers
The cost of correct rounding

Requires :
1 a faithful division on wF+1 bits and

the combined techniques : 29-bit initial approx.

2 product d̃wF+1 × y with only the LSB wF+3 bits.

3 integer subtraction (making good use of internal adders)
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Results

PA(d) = Polynomial Approximation of degree d
NR = Newton-Raphson iteration
R4 DR = Radix-4 Digit Recurrence

Algorithm Acc. Published FPGA Freq., Lat., Resources

R4 DR CR FloPoCo
StratixV

233MHz, 16, 1210ALUT, 1308REG

PA(2)
FR

ours
400MHz, 11, 274ALUT, 291REG, 2M20K, 3DSP

CR 400MHz, 15, 426ALUT, 408REG, 2M20K, 4DSP

Goldberg itera-
tions + Booth
Radix-8 Mult.

CR [1] StratixII 131MHz, 11/8, 5800ALUT, 3592ALM+12 M20K

R4 DR CR FloPoCo

StratixV

219MHz, 36, 5209ALUT, 5473REG
-

FR

FP DIV 196MHz, 24, 810ALUT, 1629REG, 9M20K, 14DSP
PA(4)

ours
380MHz, 33, 1113ALUT, 1825REG, 10M20K, 9DSP

PA(2) + NR 268MHz, 18, 887ALUT, 823REG, 2M20K, 9DSP
PA(2) + NR 400MHz, 25, 947ALUT, 1296REG, 2M20K, 9DSP
Multiplicative 2ulp [2] VII-Pro 275MHz, 36, 2097SLICE, 1 18KBRAM, 28DSP

[1] R. Goldberg, G. Even, and P.-M. Seidel, ”An FPGA implementation of pipelined multiplicative division with IEEE rounding”,
FCCM 2007
[2] M. K. Jaiswal and R. C. C. Cheung, ”High performance reconfigurable architecture for double precision floating point
division”, ARC 2012
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Conclusion

approximation-based techniques provide fast and resource-balanced
implementations

correctly-rounded dividers obtained at reduced cost

faithfully accurate divider (wF + 1 bits) == correctly rounded on wF
bits

IEEE-754 compliance is impossible if elementary functions are used :
faithful dividers allow reducing implementation cost.

divider architectures : available via Altera DSP Builder Advanced
blockset but also used by the Altera OpenCL initiative.
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