

ANR EvaFlo Reunion 23-23 September 2009

#### Florent de Dinechin and Bogdan Pasca projet Arénaire, LIP, ENS-Lyon/CNRS/INRIA/Université de Lyon





### Flopoco $^{1}$ – what, why, how ?



Not your neighbor's FPU

<sup>1</sup>Published at FPL09

### What is FloPoCo ?

- 1. Generator of operators for FPGAs
- 2. Framework for developing arithmetic operators
  - written in C++
  - generates portable synthesizable VHDL
  - open source
  - now at version 1.15

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

### Why FloPoCo?

#### VHDL/Verilog libraries are obsolete !

- too bulky
- inflexible pipelines
- high complexity code ("slippery when wet")
- no real design space exploration

#### The only way to keep FPGAs in the FP cards !

• basic FP: FPGA faster than PC, but no match to GPGPU, Cell, ...

### How?

#### **Explore Flexibility**

- mix and match FP and fixed-point
- generate economical operators for target frequency
- implement exotic arithmetic operators no available in processors

#### The tool for you is FloPoCo

- development/generator framework
- automatic pipeline synchronization infrastructure
- automatic test-bench generator
- fast synthesis scripts for Altera and Xilinx
- regression test-script

### Large multipliers using fewer DSP blocks<sup>2</sup>



<sup>2</sup>Published at FPL'09

"Large" - multiplier that consumes  $\geq 2$  embedded multipliers

Let:

- k an integer parameter
- X,Y 2*k*-bit **integers to multiply**.

Let:

k - an **integer parameter** X,Y - 2*k*-bit **integers to multiply**.

Let:



Let:

k - an **integer parameter** X,Y - 2*k*-bit **integers to multiply**.

$$X = 2^{k}X_{1} + X_{0} \qquad \underbrace{X1}_{Y = 2^{k}Y_{1} + Y_{0}} \qquad \underbrace{X1}_{Y1} \underbrace{Y0}_{Y0} \times$$

Let:

k - an **integer parameter** X,Y - 2*k*-bit **integers to multiply**.

$$X = 2^{k}X_{1} + X_{0} \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1$$

$$Y = 2^{k}Y_{1} + Y_{0} \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 0$$

$$0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 0$$

$$0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 0$$

$$0 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 0$$

Let:

k - an **integer parameter** X,Y - 2*k*-bit **integers to multiply**.



If **k=embedded multiplier width** then need **4** embedded multipliers for 2k-bit multiplication

Let:

k - an integer parameter

X,Y - 2k-bit integers to multiply.



#### If **k=embedded multiplier width** then need **4** embedded multipliers for 2k-bit multiplication

#### Generalization

 $\forall p > 1$ , numbers of size p(k-1) + 1 to pk can be decomposed into pk-bit numbers  $\Rightarrow$  architecture consuming  $p^2$  embedded multipliers.

### **Today's FPGAs**



- Small and fast memory blocks (Kbits)
  - example (Virtex4) : configurable  $2^{16}\times 1$  to  $2^9\times 36$  bits
- DSP blocks
  - 1 to 8 small multipliers (9×9, 18×18, 36×36 bits)
  - add/accumulate units
  - cascade possibility

### The premise

## DSP-blocks are a scarce resource when accelerating double precision floating-point applications $^{\rm 3}$

### we give Three recipes for saving DSPs

 $<sup>^{3}\</sup>text{D.}$  Strenski, FPGA floating point performance – a pencil and paper evaluation. HPCWire, Jan. 2007.

### Karatsuba-Ofman algorithm



#### trading multiplications for additions

Prior work by Beuchat/Tisserand for Virtex II (Arenaire)

### The Karatsuba-Ofman algorithm

#### Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks  $(X_1Y_1, X_0Y_0, D_XD_Y)$
- overhead: two k-bit and one 2k-bit subtraction

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks  $(X_1 Y_1, X_0 Y_0, D_X D_Y)$
- overhead: two k-bit and one 2k-bit subtraction
- $\bullet$  overhead  $\ll$  DSP-block emulation

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks  $(X_1Y_1, X_0Y_0, D_XD_Y)$
- overhead: two k-bit and one 2k-bit subtraction
- $\bullet$  overhead  $\ll$  DSP-block emulation

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks  $(X_1Y_1, X_0Y_0, D_XD_Y)$
- overhead: two k-bit and one 2k-bit subtraction
- $\bullet$  overhead  $\ll$  DSP-block emulation

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks  $(X_1Y_1, X_0Y_0, D_XD_Y)$
- overhead: two k-bit and one 2k-bit subtraction
- overhead << DSP-block emulation

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X<sub>1</sub>Y<sub>1</sub>, X<sub>0</sub>Y<sub>0</sub>, D<sub>X</sub>D<sub>Y</sub>)
- overhead: two k-bit and one 2k-bit subtraction
- overhead << DSP-block emulation

$$X = 2^k X_1 + X_0$$
 and  $Y = 2^k Y_1 + Y_0$ 

- computation goal:  $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute  $D_X = X_1 X_0$  and  $D_Y = Y_1 Y_0$
- make the observation:  $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X<sub>1</sub>Y<sub>1</sub>, X<sub>0</sub>Y<sub>0</sub>, D<sub>X</sub>D<sub>Y</sub>)
- overhead: two k-bit and one 2k-bit subtraction
- $\bullet$  overhead  $\ll$  DSP-block emulation

### Implementation – 34x34bit multiplier on Virtex-4

$$XY = 2^{34}X_1Y_1 + 2^{17}(X_1Y_1 + X_0Y_0 - D_XD_Y) + X_0Y_0$$



- take advantage of DSP48 by cascading
- $X_1Y_1 + X_0Y_0 D_XD_Y$  is implemented inside the DSPs
- need to recover  $X_1 Y_1$  with a subtraction

|          | latency | freq. | slices | DSPs |
|----------|---------|-------|--------|------|
| LogiCore | 6       | 447   | 26     | 4    |
| LogiCore | 3       | 176   | 34     | 4    |
| K-O-2    | 3       | 317   | 95     | 3    |

#### Remarks

- trade-off one DSP-block for 69 slices\*
- \*frequency bottleneck of 317MHz caused by SRL16
- larger frequency with more slices (disable shift register extraction)

|          | latency | freq. | slices | DSPs |
|----------|---------|-------|--------|------|
| LogiCore | 11      | 353   | 185    | 9    |
| LogiCore | 6       | 264   | 122    | 9    |
| K-O-3    | 6       | 317   | 331    | 6    |

#### Remarks:

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)

### Non-standard tilings



new multiplier family

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture  $XY = \sum tile_contribution$



#### classical binary multiplication

- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture  $XY = \sum tile_contribution$



#### classical binary multiplication

#### • all subproducts can be properly located inside the diamond

- create a rectangle by forgetting the shifts
- fill rectangle with tiles

• translate the tiling into an architecture  $XY = \sum tile_contribution$ 



#### • classical binary multiplication

#### • all subproducts can be properly located inside the diamond

- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture  $XY = \sum tile_contribution$



#### • classical binary multiplication

#### • all subproducts can be properly located inside the diamond

- create a rectangle by forgetting the shifts
- fill rectangle with tiles

• translate the tiling into an architecture  $XY = \sum tile_contribution$ 



- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture  $XY = \sum tile_contribution$

 $2^{3+1}X_{3:1}Y_{4:3}$ 



- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles

• translate the tiling into an architecture  $XY = \sum tile_contribution$ 



- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture  $XY = \sum tile_contribution$

- optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)
- classical decomposition may produce suboptimal results
- translate the operand decomposition into a tiling problem

Tiling principle

- start-off with a **rectangle** of size X.width × Y.width
- and **tiles** of size  $P \times Q$  where:
  - $P \leq embeddedMultiplier.width1$  and  $(P \leq 24)$
  - $Q \leq embeddedMultiplier.width2 (Q \leq 17)$
- place tiles so to fill-up the initial rectangle
- directly translate the placement into an architecture
- decide which multiplications are performed in LUTs

### **Tilings** – $53 \times 53$ -bit multiplication on Virtex5



- standard tiling  $\equiv$  classical decomposition (12 DSPs)
- Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)
- our proposed tiling does it in 8 DSPs and a few LUTs

### Tiling Architecture - 53x53bit



X<sub>24:33</sub> Y<sub>24:33</sub> (10x10 multiplier) probably best implemented in LUTs.
parenthesis makes best use of DSP48E internal adders (17-bit shifts)

### **Tiling Results**

58x58 multipliers on Virtex-5 (5vlx50ff676-3)<sup>4</sup>

|          | latency | Freq. | REGs | LUTs | DSPs |
|----------|---------|-------|------|------|------|
| LogiCore | 14      | 440   | 300  | 249  | 10   |
| LogiCore | 8       | 338   | 208  | 133  | 10   |
| LogiCore | 4       | 95    | 208  | 17   | 10   |
| Tiling   | 4       | 366   | 247  | 388  | 8    |

#### Remarks

- save 2 DSP48E for a few LUTs/REGs
- huge latency save at a comparable frequency
- good use of internal adders due to the 17-bit shifts

<sup>&</sup>lt;sup>4</sup>Results for 53-bits are almost identical



simple methods to save resources

- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead\*.

- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead\*.

Squaring with k = 17 on a Virtex-4  $\leq 34 - bit$ 

$$(2^{k}X_{1} + X_{0})^{2} = 2^{2k}X_{1}^{2} + \frac{2}{2} \cdot 2^{k}X_{1}X_{0} + X_{0}^{2}$$



- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead\*.

Squaring with 
$$k = 17$$
 on a Virtex-4  
 $\leq 34 - bit$   
 $(2^k X_1 + X_0)^2 = 2^{2k} X_1^2 + 2 \cdot 2^k X_1 X_0 + X_0^2$   
 $\leq 51 bit$ 

$$(2^{2k}X_2 + 2^kX_1 + X_0)^2 = 2^{4k}X_2^2 + 2^{2k}X_1^2 + X_0^2 + 2 \cdot 2^{3k}X_2X_1 + 2 \cdot 2^{2k}X_2X_0 + 2 \cdot 2^kX_1X_0$$

| X <sub>0</sub> X <sub>2</sub>               | $X_0 X_1$                     | X <sub>0</sub> <sup>2</sup>                 |  |
|---------------------------------------------|-------------------------------|---------------------------------------------|--|
| <i>X</i> <sub>1</sub> <i>X</i> <sub>2</sub> | X12                           | <i>X</i> <sub>0</sub> <i>X</i> <sub>1</sub> |  |
| X2 <sup>2</sup>                             | X <sub>1</sub> X <sub>2</sub> | X <sub>0</sub> X <sub>2</sub>               |  |

### \*However ...

$$(2^{k}X_{1} + X_{0})^{2} = 2^{34}X_{1}^{2} + 2^{18}X_{1}X_{0} + X_{0}^{2}$$

- shifts of 0, 18, 34 the previous equation
- shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
- the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

### \*However ...

$$(2^{k}X_{1} + X_{0})^{2} = 2^{34}X_{1}^{2} + 2^{18}X_{1}X_{0} + X_{0}^{2}$$

- shifts of 0, 18, 34 the previous equation
- shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
- the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

#### Workaround for $\leq$ 33-bit multiplications<sup>a</sup>

- asame trick works for  $\leq 50$
- rewrite equation:

$$(2^{17}X_1 + X_0)^2 = 2^{34}X_1^2 + 2^{17}(2X_1)X_0 + X_0^2$$

 compute 2X<sub>1</sub> by shifting X<sub>1</sub> by one bit before inputing into DSP48 block

### Results – 32-bit and 53-bit squarers on Virtex-4

|          | latency | frequency | slices | DSPs | bits |
|----------|---------|-----------|--------|------|------|
| LogiCore | 6       | 489       | 59     | 4    |      |
| LogiCore | 3       | 176       | 34     | 4    | 32   |
| Squarer  | 3       | 317       | 18     | 3    |      |
| LogiCore | 18      | 380       | 279    | 16   |      |
| LogiCore | 7       | 176       | 207    | 16   | 53   |
| Squarer  | 7       | 317       | 332    | 6    |      |

- DSPs saved without much overhead
- impressive 10 DSPs saved for double precision squarer

### Squarers on Virtex5 using tilings

- the tiling technique can be extended to squaring
- squarer architectures for 53x53-bit



#### Issues

- red squares are computed twice thus need be subtracted.
- thanks to symmetry diagonal squares of size *n* should consume only n(n+1)/2 LUTs instead of  $n^2$ .
- no implementation results ... yet

### **Multiplicative Square-Root**<sup>5</sup>

(joint work with Mioara Joldes and Guillaume Revy)



an unofficial holiday  $1/1/01, 2/2/04, 3/3/09 \dots$ 

<sup>5</sup>Published at Sympa'13

### Question of the day

Remember the DSPs and RAMs ? For computing  $\sqrt{x}$ , most libraries don't use them

or sometimes we have plenty ...

How to make good use of them?

Two classes of algorithms:

- Digit recurrence (Pentium processors)
  - Basic operation: addition
  - Convergence: linear
- Newton/Raphson iterations (AMD, PowerPC, Itanium)
  - Basic operation: multiplication
  - Convergence: quadratic
- Piecewise polynomial approximation:
  - (unclear boundary with previous method)

### Square-root using digit recurrence

• We will compute 
$$S_j = \sum_{i=1}^J s_i eta^{-i}$$

• will have 
$$S = S_n$$

• we select 
$$R_j = \beta^j (X - S_j^2)$$

The recurrence :

1: 
$$R_0 = X - 1$$
  
2: for  $j \in \{1...n\}$  do  
3:  $s_{j+1} = \text{Sel}(\beta R_j, S_j)$  ("we guess"  $s_{j+1}$ )  
4:  $R_{j+1} = \beta R_j - 2s_{j+1}S_j - s_{j+1}^2\beta^{-j-1}$   
5: end for

Two remarks

- The blue term starts-off small and grows
- The correct rounding will be computed from the last  $R_j$

### The Matula apporach

The recurrence :

- 1:  $R_{j+1} = \beta R_j 2s_{j+1}S_j s_{j+1}^2\beta^{-j-1}$ 
  - $\beta = 2^{17}$
  - still to explore

Thank you Marc Daumas !

### **Polynomial approach**

We want to compute the square root of a normalized FP number x

$$x = 2^e \times 1, f$$

If *e* is even, the square root is

$$\sqrt{x} = 2^{e/2} \times \sqrt{1, f}$$

else if *e* is odd, the square root is

$$\sqrt{x} = 2^{(e-1)/2} \times \sqrt{2 \times 1, f}$$

The problem is reduced at computing  $\sqrt{z}$  for  $z \in [1, 4[$ .

First thought: cut [1, 4[ in pieces, obtain polynomials with Sollya **Drawbacks:** 

- length of [1, 4[ is 3, 25% of table is unused
- polynomials used on the left side of [1,4[ are less precise

#### Solution:

- distinguish the two cases: odd and even exponent
- for even case  $(z \in [1,2])$  the chunks are two time smaller

If e is even let:

$$\tau_{\mathsf{even}}(x) = \sqrt{1+x}, x \in [0,1).$$

Split [0, 1[ into  $2^{k-1}$  intervals:

$$\left[\frac{i}{2^{k-1}}, \frac{i+1}{2^{k-1}}\right], i \in 0...2^{k-1} - 1$$

We approximate each  $\tau_{\text{even}}(\frac{i}{2^{k-1}}+y)$  with:

$$p_i(y) = c_{0,i} + c_{1,i}y + \cdots + c_{d,i}y^d$$

such that:

$$| au_{\mathsf{even}}(rac{i}{2^{k-1}}+y)-p_i(y)|\leq 2^{-w\mathcal{F}-2} orall y\in [0,1/2^{k-1}[.$$

If e is odd let:

$$\tau_{\rm odd}(x) = \sqrt{2+x}, x \in [0, 2).$$

Split [0, 2[ into  $2^{k-1}$  intervals:

$$\left[\frac{i}{2^{k-2}}, \frac{i+1}{2^{k-2}}\right], i \in 0...2^{k-1} - 1$$

We approximate each  $\tau_{odd}(\frac{i}{2^{k-2}}+y)$  with:

$$p_i(y) = c_{0,i} + c_{1,i}y + \cdots + c_{d,i}y^d$$

such that:

$$| au_{\mathsf{odd}}(rac{i}{2^{k-2}}+y)-p_i(y)|\leq 2^{-wF-2} \forall y\in [0,1/2^{k-1}[.$$

### Building the reduced argument

• even case: we have

$$z = 1, f_{-1}...f_{-w_F}$$
  
= 1 + 0, f\_{-1}...f\_{-k+1} + 2^{-k+1}0, f\_{-k}...f\_{-w\_F}

• odd case: we have

$$z = 2 \times 1, f$$
  
= 1f\_{-1}, f\_{-2}...f\_{-w\_F}  
= 2 + f\_{-1}, f\_{-2}...f\_{-k+1} + 2^{-k+2}0, f\_{-k}...f\_{-w\_F}

And we have a fix-point polynomial evaluation architecture, so: The reduced argument is (by aligning the dot):

• even case:  $y = 2^{-k+2} \times 0, 0f_{-k}...f_{-w_F}$ • odd case:  $y = 2^{-k+2} \times 0, f_{-k}...f_{-w_F}0$ 

### **Faithful rounding**

Denote by:

- $\tau(y)$  exact value of square root
- p(y) approximation polynomial

Using **Sollya's fpminimax** we obtain:

$$arepsilon_{\mathsf{approx}} = | au(y) - p(y)| < 2^{-wF-2}.$$

Consider r – the value computed by the architecture before final rounding (not the same as p(y) – we truncate at multiplier inputs) We use **Gappa** to verify that:

$$\varepsilon_{\mathrm{trunc}} = |r - p(y)| < 2^{-wF-2}.$$

The final truncation causes an error of:

$$\varepsilon_{\text{final}} = < 2^{-wF-1}.$$

The sum of errors is smaller than  $2^{-w_F} \rightarrow$  faithful rounding

### A glance at the architecture



### **Correct rounding**

#### The technique of Jeannerod and Revy

In order to have the correct rounding of the square root on p bits, is enough to have a faithful rounding on p + 1 bits



- have to round to p bits. Should we round up or down ?
- to decide we square  $\hat{y}$  and compare it with x

### A bird's eye view of the architecture



# Other multiplicative approaches (Newton/Raphson)

Recurrence to compute  $1/\sqrt{X}$ :

$$Y_{n+1} = Y_n \times (3 - X \times Y_n^2)/2.$$

- 3 multiplications
- use table to initialize
- to get  $\sqrt{X}$  still need to multiply by X
- here also correct rounding costs extra
- rare implementations we will soon humiliate them

### Simple precision (32bit FP)

| tool                  | precision | performance         | cost (mult,mem)                |
|-----------------------|-----------|---------------------|--------------------------------|
| CoreGen               | 0.5 ulp   | 28 cycles @ 353 MHz | 464 sl.                        |
| FPLibrary             | 0.5 ulp   | 15 cycles @ 219 MHz | 345 sl.                        |
| SRT@350MHz            | 0.5 ulp   | 26 cycles @ 353 MHz | 412 sl.                        |
| SRT@200MHz            | 0.5 ulp   | 12 cycles @ 219 MHz | 328 sl.                        |
| VFLOAT                | > 2  ulp  | 9 cycles @ >300 MHz | 351 sl., ( <mark>9</mark> , 3) |
| Poly_Faithful         | 1 ulp     | 5 cycles @ 339 MHz  | 79 sl., (2, 2)                 |
| Poly_Correct          | 0.5 ulp   | 12 cycles @ 237 MHz | 241 sl., (5, 2)                |
| Altera $(1/\sqrt{x})$ | ?         | 19 cycles @ ?       | 350 ALM, (11, ?)               |

• polynomial approach gains latency and slices

### **Double precision (64bit FP)**

| tool                  | precision | performance          | cost (mult,mem)                  |
|-----------------------|-----------|----------------------|----------------------------------|
| CoreGen               | 0.5 ulp   | 57 cycles @ 334 MHz  | 2061 sl.                         |
| FPLibrary             | 0.5 ulp   | 29 cycles @ 148 MHz  | 1352 sl.                         |
| SRT@300MHz            | 0.5 ulp   | 53 cycles @ 307 MHz  | 1740 sl.                         |
| SRT@200MHz            | 0.5 ulp   | 40 cycles @ 206 MHz  | 1617 sl.                         |
| VFLOAT                | > 2  ulp  | 17 cycles @ >200 MHz | 1572 sl., (24, 116)              |
| Poly_Faithful         | 1 ulp     | 25 cycles @ 340 MHz  | 2700 sl., (24, <mark>20</mark> ) |
| Altera $(1/\sqrt{x})$ | ?         | 32 cycles @ ?        | 900 ALM, (27, ?)                 |

• multiplicative approaches less and less convincing

• we didn't even try for correct rounding

### Conclusions

On one hand,

- DSP resources can be saved by exploiting the flexibility of the FPGA target
- flexible small granularity multipliers give best results for this techniques
- the place for this algorithms is in vendor tools

On the other hand, we are rather surprised:

- it seems difficult to effectively use DPSs to compute DP  $\sqrt{x}$
- in SP, it works because the multiplications hold in 18bits

### Try FloPoCo !



http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/