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Flopoco 1 – what, why, how ?

Not your neighbor’s FPU

1Published at FPL09
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What is FloPoCo ?

1. Generator of operators for FPGAs
2. Framework for developing arithmetic operators

written in C++

generates portable synthesizable VHDL

open source

now at version 1.15

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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Why FloPoCo?

VHDL/Verilog libraries are obsolete !

too bulky

inflexible pipelines

high complexity code (”slippery when wet”)

no real design space exploration

The only way to keep FPGAs in the FP cards !

basic FP: FPGA faster than PC, but no match to GPGPU, Cell, ...
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How?

Explore Flexibility

mix and match FP and fixed-point

generate economical operators for target frequency

implement exotic arithmetic operators no available in processors

The tool for you is FloPoCo

development/generator framework

automatic pipeline synchronization infrastructure

automatic test-bench generator

fast synthesis scripts for Altera and Xilinx

regression test-script
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Large multipliers using fewer DSP blocks2

2Published at FPL’09
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Large multipliers using embedded multipliers

”Large” - multiplier that consumes ≥ 2 embedded multipliers

Let:

k - an integer parameter

X,Y - 2k-bit integers to multiply.

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.
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Today’s FPGAs

DSP block RAM block

Small and fast memory blocks (Kbits)

example (Virtex4) : configurable 216 × 1 to 29 × 36 bits

DSP blocks
1 to 8 small multipliers (9x9, 18x18, 36x36 bits)
add/accumulate units
cascade possibility
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The premise

DSP-blocks are a scarce resource when accelerating double precision
floating-point applications 3

we give

Three recipes for saving DSPs

3D. Strenski, FPGA floating point performance – a pencil and paper evaluation.
HPCWire, Jan. 2007.
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Karatsuba-Ofman algorithm

trading multiplications for additions

Prior work by Beuchat/Tisserand for Virtex II (Arenaire)
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The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1,X0Y0,DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation
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Implementation – 34x34bit multiplier on Virtex-4

XY = 234X1Y1 + 217(X1Y1 + X0Y0 − DXDY ) + X0Y0

Y1

X1

z

X0

Y0

Y1
z

51

17

17

17

17

18

18

34

36

34

34

X0

Y0

X1

X0Y0

X0Y0(33 : 17)

X1Y1

X1Y1 + X0Y0 − DXDY

X0Y0(16 : 0)

35 XY
68

DSP48

DSP48

DSP48

take advantage of DSP48 by cascading

X1Y1 + X0Y0 − DXDY is implemented inside the DSPs

need to recover X1Y1 with a subtraction
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Results - 34x34bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 6 447 26 4

LogiCore 3 176 34 4

K-O-2 3 317 95 3

Remarks

trade-off one DSP-block for 69 slices∗

∗frequency bottleneck of 317MHz caused by SRL16

larger frequency with more slices (disable shift register extraction)
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Results - 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)
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Non-standard tilings

new multiplier family
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From multiplication to tiling

classical binary multiplication

all subproducts can be properly located inside the diamond

create a rectangle by forgetting the shifts

fill rectangle with tiles

translate the tiling into an architecture XY =
∑

tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

X5:0

Y5:0

∑

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

∑
Y2:0

X2:0

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

∑
X5:3

Y5:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

∑
X3:1

Y4:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

X
0

05

5

1

3Y

23+1X3:1Y4:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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From multiplication to tiling

X
0

05

5

1

3Y

23+1X3:1Y4:3

+21+5X3:1Y5

+23X0Y5:3

+X3:0Y2:0

+24X5:4Y5:0

XY =

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection
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Non-standard tilings

optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)

classical decomposition may produce suboptimal results

translate the operand decomposition into a tiling problem

Tiling principle

start-off with a rectangle of size X .width × Y .width

and tiles of size P × Q where:

P ≤ embeddedMultiplier .width1 and (P ≤ 24)
Q ≤ embeddedMultiplier .width2 (Q ≤ 17)

place tiles so to fill-up the initial rectangle

directly translate the placement into an architecture

decide which multiplications are performed in LUTs
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Tilings – 53× 53-bit multiplication on Virtex5

51

48

(a) standard tiling

0
0

16

33

163358

58

(b) Logicore tiling

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4

M6

M7
M8

M5

(c) proposed tiling

standard tiling ≡ classical decomposition (12 DSPs)

Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)

our proposed tiling does it in 8 DSPs and a few LUTs
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Tiling Architecture - 53x53bit

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4

M6

M7
M8

M5

XY = X0:23Y0:16 (M1)
+ 217(X0:23Y17:33 (M2)
+ 217(X0:16Y34:57 (M3)
+ 217X17:33Y34:57)) (M4)
+ 224(X24:40Y0:23 (M8)
+ 217(X41:57Y0:23 (M7)
+ 217(X34:57Y24:40 (M6)
+ 217X34:57Y41:57))) (M5)
+ 248X24:33Y24:33

X24:33Y24:33 (10x10 multiplier) probably best implemented in LUTs.

parenthesis makes best use of DSP48E internal adders (17-bit
shifts)
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Tiling Results

58x58 multipliers on Virtex-5 (5vlx50ff676-3)4

latency Freq. REGs LUTs DSPs

LogiCore 14 440 300 249 10

LogiCore 8 338 208 133 10

LogiCore 4 95 208 17 10

Tiling 4 366 247 388 8

Remarks

save 2 DSP48E for a few LUTs/REGs

huge latency save at a comparable frequency

good use of internal adders due to the 17-bit shifts

4Results for 53-bits are almost identical
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Squarers

simple methods to save resources

21



Squarers

appear in norms, statistical computations, polynomial evaluation...

dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead∗.

Squaring with k = 17 on a Virtex-4

≤ 34− bit

(2kX1 + X0)2 = 22kX 2
1 + 2 · 2kX1X0 + X 2

0

X0
2

X1
2

X0X1

X0X1

≤ 51bit

(22kX2 + 2kX1 + X0)2 = 24kX 2
2 + 22kX 2

1 + X 2
0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2 · 2kX1X0

X0
2

X1
2

X0X1

X0X1

X0X2

X0X2

X1X2

X1X2X2
2
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*However ...

(2kX1 + X0)2 = 234X 2
1 + 218X1X0 + X 2

0

shifts of 0, 18, 34 the previous equation

shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting

the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

Workaround for ≤ 33-bit multiplicationsa

asame trick works for ≤ 50

rewrite equation:

(217X1 + X0)2 = 234X 2
1 + 217(2X1)X0 + X 2

0

compute 2X1 by shifting X1 by one bit before inputing into DSP48
block
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Results – 32-bit and 53-bit squarers on Virtex-4

latency frequency slices DSPs bits

LogiCore 6 489 59 4
32LogiCore 3 176 34 4

Squarer 3 317 18 3

LogiCore 18 380 279 16
53LogiCore 7 176 207 16

Squarer 7 317 332 6

DSPs saved without much overhead

impressive 10 DSPs saved for double precision squarer
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Squarers on Virtex5 using tilings

the tiling technique can be extended to squaring

squarer architectures for 53x53-bit

36

53

17

0

M1

M2

M3 M6M5

M4

0
41 24 0

19

36

53

M1

M2

M3

M4
M5

Issues

red squares are computed twice thus need be subtracted.

thanks to symmetry diagonal squares of size n should consume only
n(n + 1)/2 LUTs instead of n2 .

no implementation results ... yet
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Multiplicative Square-Root5

(joint work with Mioara Joldes and Guillaume Revy)

an unofficial holiday
1/1/01, 2/2/04, 3/3/09 ...

5Published at Sympa’13
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Question of the day

Remember the DSPs and RAMs ?
For computing

√
x , most libraries don’t use them

or sometimes we have plenty ...

How to make good use of them?
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Algorithms for computing the square root

Two classes of algorithms:

Digit recurrence (Pentium processors)

Basic operation: addition
Convergence: linear

Newton/Raphson iterations (AMD, PowerPC, Itanium)

Basic operation: multiplication
Convergence: quadratic

Piecewise polynomial approximation:

(unclear boundary with previous method)
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Square-root using digit recurrence

We will compute Sj =

j∑
i=1

siβ
−i

will have S = Sn

we select Rj = βj(X − S2
j )

The recurrence :

1: R0 = X − 1
2: for j ∈ {1..n} do
3: sj+1 = Sel(βRj , Sj) (“we guess” sj+1)
4: Rj+1 = βRj − 2sj+1Sj − s2

j+1β
−j−1

5: end for

Two remarks

The blue term starts-off small and grows

The correct rounding will be computed from the last Rj
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The Matula apporach

The recurrence :

1: Rj+1 = βRj − 2sj+1Sj − s2
j+1β

−j−1

β = 217

still to explore

Thank you Marc Daumas !
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Polynomial approach

We want to compute the square root of a normalized FP number x

x = 2e × 1, f

If e is even, the square root is

√
x = 2e/2 ×

√
1, f

else if e is odd, the square root is

√
x = 2(e−1)/2 ×

√
2× 1, f

The problem is reduced at computing
√

z for z ∈ [1, 4[.
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Piecewise polynomial approximation

First thought: cut [1, 4[ in pieces, obtain polynomials with Sollya
Drawbacks:

length of [1, 4[ is 3, 25% of table is unused

polynomials used on the left side of [1, 4[ are less precise

Solution:

distinguish the two cases: odd and even exponent

for even case (z ∈ [1, 2]) the chunks are two time smaller
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The details – even branch

If e is even let:
τeven(x) =

√
1 + x , x ∈ [0, 1).

Split [0, 1[ into 2k−1 intervals:[
i

2k−1
,
i + 1

2k−1

[
, i ∈ 0...2k−1 − 1

We approximate each τeven( i
2k−1 + y) with:

pi (y) = c0,i + c1,iy + · · ·+ cd ,iy
d

such that:

|τeven(
i

2k−1
+ y)− pi (y)| ≤ 2−wF−2∀y ∈ [0, 1/2k−1[.
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The details – odd branch

If e is odd let:
τodd(x) =

√
2 + x , x ∈ [0, 2).

Split [0, 2[ into 2k−1 intervals:[
i

2k−2
,
i + 1

2k−2

[
, i ∈ 0...2k−1 − 1

We approximate each τodd( i
2k−2 + y) with:

pi (y) = c0,i + c1,iy + · · ·+ cd ,iy
d

such that:

|τodd(
i

2k−2
+ y)− pi (y)| ≤ 2−wF−2∀y ∈ [0, 1/2k−1[.
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Building the reduced argument

even case: we have

z = 1, f−1...f−wF

= 1 + 0, f−1...f−k+1 + 2−k+10, f−k ...f−wF

odd case: we have

z = 2× 1, f

= 1f−1, f−2...f−wF

= 2 + f−1, f−2...f−k+1 + 2−k+20, f−k ...f−wF

And we have a fix-point polynomial evaluation architecture, so:
The reduced argument is (by aligning the dot):

even case: y = 2−k+2 × 0, 0f−k ...f−wF

odd case: y = 2−k+2 × 0, f−k ...f−wF
0
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Faithful rounding

Denote by:

τ(y) exact value of square root

p(y) approximation polynomial

Using Sollya’s fpminimax we obtain:

εapprox = |τ(y)− p(y)| < 2−wF−2.

Consider r – the value computed by the architecture before final
rounding (not the same as p(y) – we truncate at multiplier inputs)
We use Gappa to verify that:

εtrunc = |r − p(y)| < 2−wF−2.

The final truncation causes an error of:

εfinal =< 2−wF−1.

The sum of errors is smaller than 2−wF → faithful rounding
36



A glance at the architecture

A D

>>8

Faithful Rounding

00

9

17

C1

C2

17
26

17

C0

27

2 7 27

16A8

53

Y

10

exc s

expsexc

X

-

X

+

e0e7 f−1 f−23f−8f−7

0

Exponent

Add and Shift

Coefficient

ROM

Exception

Logic
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Correct rounding

The technique of Jeannerod and Revy

In order to have the correct rounding of the square root on p bits, is
enough to have a faithful rounding on p + 1 bits

√
x

? ?

ŷ ŷ

y =
√

x ± ε1ε2

have to round to p bits. Should we round up or down ?

to decide we square ŷ and compare it with x
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A bird’s eye view of the architecture
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Other multiplicative approaches
(Newton/Raphson)

Recurrence to compute 1/
√

X :

Yn+1 = Yn×(3− X×Y 2
n )/2.

3 multiplications

use table to initialize

to get
√

X still need to multiply by X

here also correct rounding costs extra

rare implementations
we will soon humiliate them
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Simple precision (32bit FP)

tool precision performance cost (mult,mem)

CoreGen 0.5 ulp 28 cycles @ 353 MHz 464 sl.
FPLibrary 0.5 ulp 15 cycles @ 219 MHz 345 sl.

SRT@350MHz 0.5 ulp 26 cycles @ 353 MHz 412 sl.
SRT@200MHz 0.5 ulp 12 cycles @ 219 MHz 328 sl.

VFLOAT > 2 ulp 9 cycles @ >300 MHz 351 sl., (9, 3)
Poly Faithful 1 ulp 5 cycles @ 339 MHz 79 sl., (2, 2)
Poly Correct 0.5 ulp 12 cycles @ 237 MHz 241 sl., (5, 2)

Altera (1/
√

x) ? 19 cycles @ ? 350 ALM, (11, ?)

polynomial approach gains latency and slices
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Double precision (64bit FP)

tool precision performance cost (mult,mem)

CoreGen 0.5 ulp 57 cycles @ 334 MHz 2061 sl.
FPLibrary 0.5 ulp 29 cycles @ 148 MHz 1352 sl.

SRT@300MHz 0.5 ulp 53 cycles @ 307 MHz 1740 sl.
SRT@200MHz 0.5 ulp 40 cycles @ 206 MHz 1617 sl.

VFLOAT > 2 ulp 17 cycles @ >200 MHz 1572 sl., (24, 116)
Poly Faithful 1 ulp 25 cycles @ 340 MHz 2700 sl., (24, 20)

Altera (1/
√

x) ? 32 cycles @ ? 900 ALM, (27, ?)

multiplicative approaches less and less convincing

we didn’t even try for correct rounding
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Conclusions

On one hand,

DSP resources can be saved by exploiting the flexibility of the
FPGA target

flexible small granularity multipliers give best results for this
techniques

the place for this algorithms is in vendor tools

On the other hand, we are rather surprised:

it seems difficult to effectively use DPSs to compute DP
√

x

in SP, it works because the multiplications hold in 18bits

43



Try FloPoCo !

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
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