_~ Multipliers and Square Root
for FloPoCo

ANR EvaFlo Reunion 23-23 September 2009

Florent de Dinechin and Bogdan Pasca
projet Arénaire, LIP,
ENS-Lyon/CNRS/INRIA/Université de Lyon

OL'?O - @ %I INRIA

e

Flopoco ! — what, why, how ?

Not your neighbor’'s FPU

1Published at FPL0O9

What is FloPoCo ?

1. Generator of operators for FPGAs
2. Framework for developing arithmetic operators

o written in CH++
@ generates portable synthesizable VHDL
@ open source

@ now at version 1.15

http://www.ens-1lyon.fr/LIP/Arenaire/Ware/FloPoCo/

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Why FloPoCo?

VHDL /Verilog libraries are obsolete !
@ too bulky
@ inflexible pipelines
@ high complexity code ("slippery when wet")
@ no real design space exploration
The only way to keep FPGAs in the FP cards !

@ basic FP: FPGA faster than PC, but no match to GPGPU, Cell, ...

How?

Explore Flexibility
@ mix and match FP and fixed-point
@ generate economical operators for target frequency

@ implement exotic arithmetic operators no available in processors

The tool for you is FloPoCo
development/generator framework

automatic pipeline synchronization infrastructure
automatic test-bench generator

fast synthesis scripts for Altera and Xilinx

®© 6 6 o o

regression test-script

Large multipliers using fewer DSP blocks?

2Pyblished at FPL'09

Large multipliers using embedded multipliers |

"Large” - multiplier that consumes > 2 embedded multipliers

Large multipliers using embedded multipliers J

Let:
k - an integer parameter

XY - 2k-bit integers to multiply.

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
X,Y - 2k-bit integers to multiply.

X 101101
Y 110100

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
X,Y - 2k-bit integers to multiply.

k=3

-

X 101101
Y 110100

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

k=3
X = 25X + X %
Y =24Vi+ Y

Large multipliers using embedded multipliers

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2+ X
Y =2+ Y
010100
0 100
0 110
1

—_— =
S = O

011

Large multipliers using embedded multipliers

J

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2KX + Xo %
Y =24Vi+ Y

(YOX0) Y0X0

Y0 X1 +2kY0X1

E Y1 X0 ; +2kY1X0

(Y1 X1) +22kY1X1

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Large multipliers using embedded multipliers |

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2KX + Xo %
Y =24Vi+ Y

(YOX0) Y0X0

Y0 X1 +2kY0X1

E Y1 X0 ; +2kY1X0

(Y1 X1) +22kY1X1

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication
Generalization

¥V p > 1, numbers of size p(k — 1) + 1 to pk can be decomposed into p
k-bit numbers = architecture consuming p?> embedded multipliers.

Today’s FPGAs

.iﬁlﬁﬁﬂ'lﬁﬂ'lﬁlﬁﬁlﬁﬁlﬁﬁ,u 57) A 0 L A (W, 5)) O O

DSP block RAM block

@ Small and fast memory blocks (Kbits)

o example (Virtex4) : configurable 2'® x 1 to 2° x 36 bits
@ DSP blocks

o 1 to 8 small multipliers (9x9, 18x18, 36x36 bits)

o add/accumulate units
o cascade possibility

The premise

DSP-blocks are a scarce resource when accelerating double precision
floating-point applications 3

we give

Three recipes for saving DSPs

3D. Strenski, FPGA floating point performance — a pencil and paper evaluation.
HPCWire, Jan. 2007.

Karatsuba-Ofman algorithm

trading multiplications for additions

Prior work by Beuchat/Tisserand for Virtex Il (Arenaire)

10

The Karatsuba-Ofman algorithm

Basic principle for two way splitting

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

@ computation goal: XY = 22kX;Y; 4+ 25K(X1 Yo + Xo Y1) + Xo Yo
@ precompute Dx = X1 — Xp and Dy = Y1 — Y

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

@ computation goal: XY = 22kX;Y; 4+ 25K(X1 Yo + Xo Y1) + Xo Yo
@ precompute Dx = X1 — Xp and Dy = Y1 — Y

@ make the observation: XYy + XoY: = X1Ys + XoYo — DxDy
°

°

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo
precompute Dx = X; — Xp and Dy = Y1 — Y

make the observation: Xi Yy + XoVYs = X1 Y1 + XoYo — DxDy
XY requires only 3 DSP blocks (X1 Y1, Xp Yo, DxDy)

11

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo
precompute Dx = X; — Xp and Dy = Y1 — Y

make the observation: Xi Yy + XoVYs = X1 Y1 + XoYo — DxDy
XY requires only 3 DSP blocks (X1 Y1, Xp Yo, DxDy)
overhead: two k-bit and one 2k-bit subtraction

overhead <« DSP-block emulation

11

Implementation — 34x34bit multiplier on Virtex—4J

XY =2%X Y1 + 2100V XY

X117

Y17

Xi— 18
Xp
Yi— 18
Yo

X1l

Yool

DxDy)+ XoYo

o take advantage of DSP48 by cascading
@ XYy + XoYy— DxDy is implemented inside the DSPs
@ need to recover Xi Y7 with a subtraction

I I DSP48 XYy + XY — DXDY
R 34 Jan) ‘3 X1Y1 68 XY
I
+F§> ‘ XoYo(33} 17)
DS5P48
: ;X 36\ I i XoYo(16 : 0)
DSP48
bx P Pl
I I IXO Y,

12

Results - 34x34bit multiplier on Virtex-4 |

| || latency | freq. | slices | DSPs |

LogiCore 6 447 26 4
LogiCore 3 176 34 4

Remarks
o trade-off one DSP-block for 69 slices*
o *frequency bottleneck of 317MHz caused by SRL16

o larger frequency with more slices (disable shift register extraction)

13

Results - 51x51bit multiplier on Virtex-4

| || latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
o reduced DSP usage from 9 to 6
@ overhead of 6k LUTs for the pre-subtractions

@ overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

Non-standard tilings

new multiplier family

15

From multiplication to tiling

16

From multiplication to tiling

oo 0000 Xs.0
X o0 0000 Ys.0
o000 00
o000 00
o000 00
o0 0000 Z
o0 0000
o0 0000

classical binary multiplication

®© 6 6 0 o

16

From multiplication to tiling

®© 6 6 0 o

o000 X0
X o0 0 Y50
o0 0
o0 0
oo o

2

all subproducts can be properly located inside the diamond

16

From multiplication to tiling

®© 6 6 0 o

() Xs3

X e 00 Ys.3

L) Z

all subproducts can be properly located inside the diamond

16

From multiplication to tiling

o000 X34

X (I Y3

e oo Z

all subproducts can be properly located inside the diamond

16

From multiplication to tiling

o000 X34
i (K Y3
e oo Z
e oo
v
°
°
@ create a rectangle by forgetting the shifts
°

16

From multiplication to tiling

5 X 0,
2371 X351 Yas
ecoe 37
ceoe
5

fill rectangle with tiles

16

From multiplication to tiling J

T ee e e o
XY :23+1X3:1Y4:3 o ol o 0o
+2*X5.4 Y50 o oo oo
+X33;0Y2:o o olo e oop”
+2°Xp Y53 o olle o oe
o ol[o o o]lep

translate the tiling into an architecture XY = _ tile_contribution

. . . __ ~upper_right_cornerX+Y
tile_contribution = 2UPPer-rg Xprojection Y projection

16

Non-standard tilings

@ optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)
@ classical decomposition may produce suboptimal results

@ translate the operand decomposition into a tiling problem

Tiling principle
o start-off with a rectangle of size X.width x Y .width

@ and tiles of size P x @ where:

o P < embeddedMultiplier.widthl and (P < 24)
o Q < embeddedMultiplier.width2 (Q < 17)

@ place tiles so to fill-up the initial rectangle
o directly translate the placement into an architecture

@ decide which multiplications are performed in LUTs

17

Tilings — 53 x 53-bit multiplication on Virtex5

48 58 33 16 0 41 24 0
0 I 0
Iy | M8 | M
I 17
24 | M2
33 M6
|
| M5 M4 M3

-— = = = == =51 | [

34

41

58 58 34 17

(a) standard tiling (b) Logicore tiling (c) proposed tiling

e standard tiling = classical decomposition (12 DSPs)
@ Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)
@ our proposed tiling does it in 8 DSPs and a few LUTs

18

Tiling Architecture - 53x53bit

41 24

|

|
24 I M2

M6

l
41

| M5 M4 M3
58 34 17

@ X24:33 Yo2a:33 (10x10 multiplier) probably best implemented in LUTs.

17

34

+H+++++

X0:23 Yo:16
217 (Xo.23 Yi7:33
217 (Xo:16 Y3a:57
217 X17.33 Y34:57))
22%(Xo4:40 Yo:23
217 (Xa1:57 Yo:23
217 (X34:57 Yaa:40
2" X34.57 Ya1:57)))
2%8X54:33 Y24:33

(M1)
(M2)
(M3)
(M4)
(M8)
(M7)
(Me)
(M5)

@ parenthesis makes best use of DSP48E internal adders (17-bit

shifts)

19

Tiling Results

58x58 multipliers on Virtex-5 (5vIx50ff676-3)*

| || latency | Freq. | REGs | LUTs | DSPs |

LogiCore 14 440 | 300 249 10
LogiCore 8 338 | 208 133 10
LogiCore 4 95 208 17 10

Remarks
@ save 2 DSP48E for a few LUTs/REGs

@ huge latency save at a comparable frequency

@ good use of internal adders due to the 17-bit shifts

“Results for 53-bits are almost identical

Squarers

simple methods to save resources

21

Squarers

@ appear in norms, statistical computations, polynomial evaluation...
o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

22

Squarers |

@ appear in norms, statistical computations, polynomial evaluation...
o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with kK = 17 on a Virtex-4
< 34 — bit

XoX1 Pz

(25X + X0)2 = 2% X2 + 2 2K X1 Xo + X2

X2 [

22

Squarers

@ appear in norms, statistical computations, polynomial evaluation...

o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with kK = 17 on a Virtex-4

< 34 — bit
XX | X?
2KX; + Xo)? = 22K X2 + 2. 25X, Xo + X2
1 0 X2 | XX
< 51bit
(9% + 25X + X = 200G + 2P+ X7 [w
+ 2-23kX,X; we | = B
+ 222X X,
\ 5. 2kX1X0 X2 | X% | XX

22

*However ...

(25X1 + X0)? = 234 X2 + 218X X0 + X&

@ shifts of 0, 18, 34 the previous equation
@ shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
o the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

23

*However ...

(25X1 + X0)? = 234 X2 + 218X X0 + X&

@ shifts of 0, 18, 34 the previous equation
@ shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
o the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

Workaround for < 33-bit multiplications?

“same trick works for < 50

@ rewrite equation:
(27X + Xo)? = 234 X2 4 217 (2X1) Xo + X3

@ compute 2X; by shifting X; by one bit before inputing into DSP48
block

4

23

Results — 32-bit and 53-bit squarers on Virtex-4 |

’ H latency | frequency \ slices \ DSPs \ bits ‘

LogiCore 6 489 59 4
LogiCore 3 176 34 4 32
Squarer 3 317 18 3
LogiCore 18 380 279 16
LogiCore 7 176 207 16 53
Squarer 7 317 332 6

@ DSPs saved without much overhead
@ impressive 10 DSPs saved for double precision squarer

Squarers on Virtexd using tilings

@ the tiling technique can be extended to squaring
@ squarer architectures for 53x53-bit

41 24 0

M4 M3

36 36

M5
53 53

Issues
@ red squares are computed twice thus need be subtracted.

@ thanks to symmetry diagonal squares of size n should consume only
n(n+1)/2 LUTs instead of n? .

@ no implementation results ... yet

25

Multiplicative Square-Root®

(joint work with Mioara Joldes and Guillaume Revy)

HAPPY

quare Root

DAY

an unofficial holiday
1/1/01, 2/2/04, 3/3/09 ...

SPublished at Sympa’13

26

Question of the day

Remember the DSPs and RAMs 7
For computing /x, most libraries don't use them

or sometimes we have plenty ...

How to make good use of them?

27

Algorithms for computing the square root

Two classes of algorithms:

e Digit recurrence (Pentium processors)
o Basic operation: addition
o Convergence: linear

@ Newton/Raphson iterations (AMD, PowerPC, Itanium)
o Basic operation: multiplication
o Convergence: quadratic

@ Piecewise polynomial approximation:
o (unclear boundary with previous method)

28

Square-root using digit recurrence

J
o We will compute S; = Zs,—ﬂ_’
i=1

o will have S = S,
® we select Rj = #(X - S7)
@ The recurrence :
1 Rp=X-1
for j € {1..n} do
S_]+1 =Sel(BR;,S;)) ("we guess” sj;1)

Rit1=OR; — 253415 — 57, 6777
end for

Two remarks
@ The blue term starts-off small and grows

@ The correct rounding will be computed from the last R;

29

The Matula apporach J

The recurrence :
_ 2 a—j—1
L Rjy1 = ARy — 25415 — 57,07

o 3 =2

@ still to explore

Thank you Marc Daumas !

30

Polynomial approach

We want to compute the square root of a normalized FP number x
x=2°x1f
If e is even, the square root is
Vx =22 x \/1,f
else if e is odd, the square root is
Vx = 2(e7D/2 m

The problem is reduced at computing +/z for z € [1,4].

31

Piecewise polynomial approximation

First thought: cut [1,4[in pieces, obtain polynomials with Sollya
Drawbacks:

o length of [1,4[is 3, 25% of table is unused

@ polynomials used on the left side of [1,4[are less precise
Solution:

@ distinguish the two cases: odd and even exponent

o for even case (z € [1,2]) the chunks are two time smaller

32

The details — even branch

If e is even let:

7'even(X) =v1+x,x¢€ [0, 1).

Split [0, 1] into 2k~ intervals:

[i i+1

2k1,2k1[,ie 0.2 -1

We approximate each 7'e\,en(2k’—._1 + y) with:

pi(y) =coi+criy+---+ Cd,iyd

such that:

i

[Teven (g +¥) = Pi(y)| 27" 2y € [0,1/2°77

33

The details — odd branch

If e is odd let:

Todd(X) = V2 + x,x € [0,2).

Split [0, 2] into 2k~ intervals:

ioit1f 1
|:2k2’2k2|:7l€02 -1
We approximate each 7'0dd(2%_2 + y) with:

pi(y) =coi+criy+---+ Cd,iyd

such that:

i e)
Toad(57= +) — pily)] <27 2y € [0,1/2577].

34

Building the reduced argument |

@ even case: we have

zZ = 17 f—l---f—w,:
=140,f 1 fpjpr +2750,F pfy,

@ odd case: we have
z=2x1,f
=1f 1, ofy,
=24 f 1, fofpy1 +27520,F 4o f,

And we have a fix-point polynomial evaluation architecture, so:
The reduced argument is (by aligning the dot):

e even case: y =2 K+2 x 0,0f ...f_,,
e odd case: y =252 x 0, f ,..f .0

35

Faithful rounding |

Denote by:
e 7(y) exact value of square root
e p(y) approximation polynomial
Using Sollya’s fpminimax we obtain:

Eapprox = |T(y) — p(y)| < 27"F72.

Consider r — the value computed by the architecture before final
rounding (not the same as p(y) — we truncate at multiplier inputs)
We use Gappa to verify that:

—wF—2
Etrunc:|r_p(}/)‘ <27 :
The final truncation causes an error of:
—wF-1
Efinal =< 27" 7.

The sum of errors is smaller than 27"F — faithful rounding
36

A glance at the architecture

#\Q 8 A

| exXC | S|e7 exp :f,l 7= r,23\|
C

A Coefficient D
ROM

Exception Exponent
Logic Add and Shift

2 7
EaEE | |

1
1
,
Faithful Rounding,

Correct rounding

The technique of Jeannerod and Revy

In order to have the correct rounding of the square root on p bits, is
enough to have a faithful rounding on p + 1 bits

VX
yZ\/;:i:c‘:lEz 5‘
y

@ have to round to p bits. Should we round up or down ?

:

@ to decide we square ¥ and compare it with x

38

A bird’s eye view of the architecture

J

exc [s]er exp [f7[s Ta3]|

— M 0 0

Exception Exponent
Logic Add and Shift]

2 7

[T 3]0 []

Fdithful Rounding,

|

I
31 1 Fraction !
0 1

.
.
1
H
H
,
' '
' 101 !
' 1
1 Alignment! |
ol N TR0 e e e !
i :
: ,
' 1
' 1
' 1
' 1
' l
H
.
1
1
\

39

Other multiplicative approaches
(Newton/Raphson)

Recurrence to compute 1/v/X:

Yor1 = Yax(3 — XxY?)/2.

@ 3 multiplications

@ use table to initialize

o to get v/ X still need to multiply by X
@ here also correct rounding costs extra
°

rare implementations
we will soon humiliate them

40

Simple precision (32bit FP)

] tool | precision || performance || cost (mult,mem) |
CoreGen 0.5 ulp 28 cycles @ 353 MHz || 464 sl.
FPLibrary 0.5 ulp 15 cycles @ 219 MHz || 345 sl.

SRT@350MHz | 0.5 ulp 26 cycles @ 353 MHz || 412 sl.

SRT©@200MHz | 0.5 ulp 12 cycles @ 219 MHz || 328 sl.

VFLOAT >2ulp || 9 cycles @ >300 MHz || 351 sl., (9, 3)
Poly_Faithful 1 ulp 5 cycles @ 339 MHz 79 sl., (2, 2)
Poly_Correct 0.5 ulp 12 cycles @ 237 MHz || 241 sl., (5, 2)

[Altera (1/y/x) | ? I 19 cycles @ ? | 350 ALM, (11, 7) |

@ polynomial approach gains latency and slices

Double precision (64bit FP)

] tool | precision | performance | cost (mult,mem) |

CoreGen 0.5 ulp 57 cycles @ 334 MHz 2061 sl.

FPLibrary 0.5 ulp 29 cycles @ 148 MHz 1352 sl.
SRT@300MHz | 0.5 ulp 53 cycles @ 307 MHz 1740 sl.
SRT@200MHz | 0.5 ulp 40 cycles @ 206 MHz 1617 sl.

VFLOAT > 2 ulp || 17 cycles @ >200 MHz || 1572 sl., (24, 116)

Poly_Faithful 1 ulp 25 cycles © 340 MHz || 2700 sl., (24, 20)
[Altera (1/vx) [7] 32 cycles @ ? [900 ALM, (27,7) |

@ multiplicative approaches less and less convincing

@ we didn’t even try for correct rounding

42

Conclusions

On one hand,

@ DSP resources can be saved by exploiting the flexibility of the
FPGA target

o flexible small granularity multipliers give best results for this
techniques

@ the place for this algorithms is in vendor tools

On the other hand, we are rather surprised:

o it seems difficult to effectively use DPSs to compute DP /x
@ in SP, it works because the multiplications hold in 18bits

43

Try FloPoCo !

http://www.ens-1lyon.fr/LIP/Arenaire/Ware/FloPoCo/

44

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

	FloPoCo - what, why, how
	Large multipliers using fewer DSP blocks
	Karatsuba-Ofman algorithm
	Non-standard tilings
	Squarers
	Multiplicative Square-Root
	Square-root using digit recurrence
	Multiplicative square-root
	Multiplicative approach -- Newton/Raphson
	Results
	Conclusions

