Large multipliers with fewer DSP blocks

FPL09

Florent de Dinechin, Bogdan Pasca
projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon, France

0670’ .. @ Binria

Outline

Context of this work

Karatsuba-Ofman algorithm

Non-standard tilings

Squarers

Conclusions

Large multipliers using embedded multipliers |

"Large” - multiplier that consumes > 2 embedded multipliers

Large multipliers using embedded multipliers J

Let:
k - an integer parameter

XY - 2k-bit integers to multiply.

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
X,Y - 2k-bit integers to multiply.

X 101101
Y 110100

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
X,Y - 2k-bit integers to multiply.

k=3

-

X 101101
Y 110100

Large multipliers using embedded multipliers J

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

k=3
X = 25X + X %
Y =24Vi+ Y

Large multipliers using embedded multipliers

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2+ X
Y =2+ Y
010100
0 100
0 110
1

—_— =
S = O

011

Large multipliers using embedded multipliers

J

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2KX + Xo %
Y =24Vi+ Y

(YOX0) Y0X0

Y0 X1 +2kY0X1

E Y1 X0 ; +2kY1X0

(Y1 X1) +22kY1X1

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Large multipliers using embedded multipliers |

Let:
k - an integer parameter
XY - 2k-bit integers to multiply.

X =2KX + Xo %
Y =24Vi+ Y

(YOX0) Y0X0

Y0 X1 +2kY0X1

E Y1 X0 ; +2kY1X0

(Y1 X1) +22kY1X1

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication
Generalization

¥V p > 1, numbers of size p(k — 1) + 1 to pk can be decomposed into p
k-bit numbers = architecture consuming p?> embedded multipliers.

Embedded multipliers and more ...

Xilinx - DSP-block evolution

Embedded multipliers and more ...

Xilinx - DSP-block evolution
Virtexll-Pro
o starts-off as a 18 x 18 signed multiplier (k=17)

Embedded multipliers and more ...

Xilinx - DSP-block evolution
Virtexll-Pro
o starts-off as a 18 x 18 signed multiplier (k=17)
VirtexIlV — DSP48

e multiplier followed by a 48-bit adder/subtracter unit
@ adder/subtracter inputs are cascadable
@ optional registers present

Embedded multipliers and more ...

Xilinx - DSP-block evolution
Virtexll-Pro
o starts-off as a 18 x 18 signed multiplier (k=17)
VirtexIV — DSP48

e multiplier followed by a 48-bit adder/subtracter unit
@ adder/subtracter inputs are cascadable
@ optional registers present

VirtexV — DSP48E
@ asymmetrical multiplier of 18 x 25 signed
@ 3-operand adder/subtracter, one input coming from
global routing

Embedded multipliers and more ...

Altera - DSP-block evolution

Embedded multipliers and more ...

Altera - DSP-block evolution
Stratix, Stratix-I1

o four 18 x 18 multipliers (may function as unsigned)
@ two levels of adders

@ can perform:

eight 9x9 products

o four 18x18 products independently or

o one 36x36-bit product or

o one 18x18-bit complex product

(]

Embedded multipliers and more ... |

Altera - DSP-block evolution
Stratix, Stratix-11

o four 18 x 18 multipliers (may function as unsigned)
@ two levels of adders
@ can perform:

o eight 9x9 products

o four 18x18 products independently or

o one 36x36-bit product or

o one 18x18-bit complex product

Stratix Ill, IV

@ two Stratix-1l DSPs are coupled to form the new DSP

@ neighboring half-DSPs may be cascaded

@ less flexible, limited DSP bandwidth: half-DSP
cannot be split into 4 independent 18x18-bit productsl

The premise

DSP-blocks are a scarce resource when accelerating double precision
floating-point applications !

we give

Three recipes for saving DSPs

ID. Strenski, FPGA floating point performance — a pencil and paper evaluation.
HPCWire, Jan. 2007.

Karatsuba-Ofman algorithm

trading multiplications for additions

The Karatsuba-Ofman algorithm

Basic principle for two way splitting

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

@ computation goal: XY = 22kX;Y; 4+ 25K(X1 Yo + Xo Y1) + Xo Yo
@ precompute Dx = X1 — Xp and Dy = Y1 — Y

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

@ computation goal: XY = 22kX;Y; 4+ 25K(X1 Yo + Xo Y1) + Xo Yo
@ precompute Dx = X1 — Xp and Dy = Y1 — Y

@ make the observation: XYy + XoY: = X1Ys + XoYo — DxDy
°

°

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo
precompute Dx = X; — Xp and Dy = Y1 — Y

make the observation: Xi Yy + XoVYs = X1 Y1 + XoYo — DxDy
XY requires only 3 DSP blocks (X1 Y1, Xp Yo, DxDy)

The Karatsuba-Ofman algorithm

Basic principle for two way splitting
@ split X and Y into two chunks:

X=2X1+X, and Y =2KYi+ Yy

computation goal: XY = 22kX; Y] + 2K(X1 Yo + Xo Y1) + Xo Yo
precompute Dx = X; — Xp and Dy = Y1 — Y

make the observation: Xi Yy + XoVYs = X1 Y1 + XoYo — DxDy
XY requires only 3 DSP blocks (X1 Y1, Xp Yo, DxDy)
overhead: two k-bit and one 2k-bit subtraction

overhead <« DSP-block emulation

Implementation — 34x34bit multiplier on Virtex—4J

fairly trivial starting from the equation:

XY =23 X1 Y1 + 217 (G Y+ Xo Yo — Dy Dy) 4+ X Yo

X1~ 18
XoZC
Yi— 18
YoZC

Xo=LT

Yoolll 7

X, 17 DSP48
Miﬁb

VAN

X1Y1 + XY —
= e

T

&S
U)
v
~
(@]

XoYo(33

- DxD
'x Dy XY

68
- 17)

X() Y0(16 . 0)

2
=

o X1 Y1+ XoYy — DxDy is implemented inside the DSPs
@ need to recover XiY7 with a subtraction

Results - 34x34bit multiplier on Virtex-4 |

| || latency | freq. | slices | DSPs |

LogiCore 6 447 26 4
LogiCore 3 176 34 4

Remarks
o trade-off one DSP-block for 69 slices*
o *frequency bottleneck of 317MHz caused by SRL16

o larger frequency with more slices (disable shift register extraction)

10

Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + Xo
Y = 22kY2 + 2kY1 + Yo

11

Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + Xo
Y =22k, +2kY; + Y

Compute the products:

Py =X2Y> Po1 = (X2 — X1) x (Y2 — Y1)
P11 = X111 P10 = (X1 — Xo) x (Y1 — Yo)
Poo = Xo Yo Py = (X2 — Xp) x (Y2 — Yo)

11

Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + Xo
Y =22k, +2kY; + Y

Compute the products:

Py =X2Y> Po1 = (X2 — X1) x (Y2 — Y1)
P11 = X111 P10 = (X1 — Xo) x (Y1 — Yo)
Poo = Xo Yo Py = (X2 — Xp) x (Y2 — Yo)

The product XY uses 6 DSPs instead of 9:

XY 24k p,,

23K(Pyy + P11 — Pay)
22k(Py + P11 + Poo — P2o)
2K(P11 4+ Poo — P1o)

Poo

+ 4+ +

11

Results — 51x51bit multiplier on Virtex-4

| || latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
o
o

Results — 51x51bit multiplier on Virtex-4

| || latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
@ reduced DSP usage from 9 to 6
°

Results — 51x51bit multiplier on Virtex-4

| || latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
@ reduced DSP usage from 9 to 6
@ overhead of 6k LUTs for the pre-subtractions

Results — 51x51bit multiplier on Virtex-4

| || latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
@ reduced DSP usage from 9 to 6
@ overhead of 6k LUTs for the pre-subtractions

@ overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

Results — 51x51bit multiplier on Virtex-4

| | latency | freq. | slices | DSPs |

LogiCore 11 353 | 185 9
LogiCore 6 264 | 122 9

Remarks:
@ reduced DSP usage from 9 to 6
@ overhead of 6k LUTs for the pre-subtractions

@ overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

o the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

Non-standard tilings

new multiplier family

13

From multiplication to tiling

14

From multiplication to tiling

oo 0000 Xs.0
X o0 0000 Ys.0
o000 00
o000 00
o000 00
o0 0000 Z
o0 0000
o0 0000

classical binary multiplication

®© 6 6 0 o

14

From multiplication to tiling

®© 6 6 0 o

o000 X0
X o0 0 Y50
o0 0
o0 0
oo o

2

all subproducts can be properly located inside the diamond

14

From multiplication to tiling

®© 6 6 0 o

() Xs3

X e 00 Ys.3

L) Z

all subproducts can be properly located inside the diamond

14

From multiplication to tiling

o000 X34

X (I Y3

e oo Z

all subproducts can be properly located inside the diamond

14

From multiplication to tiling

o000 X34
i (K Y3
e oo Z
e oo
v
°
°
@ create a rectangle by forgetting the shifts
°

14

From multiplication to tiling

5 X 0,
2371 X351 Yas
ecoe 37
ceoe
5

fill rectangle with tiles

14

From multiplication to tiling J

T ee e e o
XY :23+1X3:1Y4:3 o ol o 0o
+2*X5.4 Y50 o oo oo
+X33;0Y2:o o olo e oop”
+2°Xp Y53 o olle o oe
o ol[o o o]lep

translate the tiling into an architecture XY = _ tile_contribution

. . . __ ~upper_right_cornerX+Y
tile_contribution = 2UPPer-rg Xprojection Y projection

14

Non-standard tilings

@ optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)
@ classical decomposition may produce suboptimal results

@ translate the operand decomposition into a tiling problem

Tiling principle
o start-off with a rectangle of size X.width x Y .width

@ and tiles of size P x @ where:

o P < embeddedMultiplier.widthl and (P < 24)
o Q < embeddedMultiplier.width2 (Q < 17)

@ place tiles so to fill-up the initial rectangle
o directly translate the placement into an architecture

@ decide which multiplications are performed in LUTs

15

Tilings — 53 x 53-bit multiplication on Virtex5

48 58 33 16 0 41 24 0
0 I 0
Iy | M8 | M
I 17
24 | M2
33 M6
|
| M5 M4 M3

-— = = = == =51 | [

34

41

58 58 34 17

(a) standard tiling (b) Logicore tiling (c) proposed tiling

e standard tiling = classical decomposition (12 DSPs)
@ Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)
@ our proposed tiling does it in 8 DSPs and a few LUTs

16

Tiling Architecture - 53x53bit

41 24

|

|
24 I M2

M6

l
41

| M5 M4 M3
58 34 17

@ X24:33 Yo2a:33 (10x10 multiplier) probably best implemented in LUTs.

17

34

+H+++++

X0:23 Yo:16
217 (Xo.23 Yi7:33
217 (Xo:16 Y3a:57
217 X17.33 Y34:57))
22%(Xo4:40 Yo:23
217 (Xa1:57 Yo:23
217 (X34:57 Yaa:40
2" X34.57 Ya1:57)))
2%8X54:33 Y24:33

(M1)
(M2)
(M3)
(M4)
(M8)
(M7)
(Me)
(M5)

@ parenthesis makes best use of DSP48E internal adders (17-bit

shifts)

17

Tiling Results

58x58 multipliers on Virtex-5 (5vIx50ff676-3)2

| || latency | Freq. | REGs | LUTs | DSPs |

LogiCore 14 440 | 300 249 10
LogiCore 8 338 | 208 133 10
LogiCore 4 95 208 17 10

Remarks
@ save 2 DSP48E for a few LUTs/REGs

@ huge latency save at a comparable frequency

@ good use of internal adders due to the 17-bit shifts

2Results for 53-bits are almost identical

Squarers

simple methods to save resources

19

Squarers

@ appear in norms, statistical computations, polynomial evaluation...
o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

20

Squarers |

@ appear in norms, statistical computations, polynomial evaluation...
o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with kK = 17 on a Virtex-4
< 34 — bit

XoX1 Pz

(25X + X0)2 = 2% X2 + 2 2K X1 Xo + X2

X2 [

20

Squarers

@ appear in norms, statistical computations, polynomial evaluation...

o dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with kK = 17 on a Virtex-4

< 34 — bit
XX | X?
2KX; + Xo)? = 22K X2 + 2. 25X, Xo + X2
1 0 X2 | XX
< 51bit
(9% + 25X + X = 200G + 2P+ X7 [w
+ 2-23kX,X; we | = B
+ 222X X,
\ 5. 2kX1X0 X2 | X% | XX

20

*However ...

(25X1 4+ Xp)? = 234 X2 + 218X Xo + X2

@ shifts of 0, 18, 34 the previous equation
@ shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
@ the DSP48 of VirtexlIV allow shifts of 17 so internal adders unused

21

*However ...

(25X1 4+ Xp)? = 234 X2 + 218X Xo + X2

@ shifts of 0, 18, 34 the previous equation
@ shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
@ the DSP48 of VirtexlIV allow shifts of 17 so internal adders unused

Workaround for < 33-bit multiplications

@ rewrite equation:
(27 X1 4 Xp)? = 234 X2 4+ 217 (2X1) Xo + X&

@ compute 2X; by shifting X; by one bit before inputing into DSP48
block

v

21

Results — 32-bit and 53-bit squarers on Virtex-4 |

’ H latency | frequency \ slices \ DSPs \ bits ‘

LogiCore 6 489 59 4
LogiCore 3 176 34 4 32
Squarer 3 317 18 3
LogiCore 18 380 279 16
LogiCore 7 176 207 16 53
Squarer 7 317 332 6

@ DSPs saved without much overhead
@ impressive 10 DSPs saved for double precision squarer

Squarers on Virtexd using tilings

@ the tiling technique can be extended to squaring
@ squarer architectures for 53x53-bit

41 24 0

M4 M3

36 36

M5
53 53

Issues
@ red squares are computed twice thus need be subtracted.

@ thanks to symmetry diagonal squares of size n should consume only
n(n+1)/2 LUTs instead of n? .

@ no implementation results ... yet

23

Summary

o Karatsuba-Ofman reduces DSP cost from 4 to 3, 9 to 6, 16 to 10
at small price

@ introduced original family of multipliers and squarer architectures
for Virtex-5 using the concept of tiling

o dedicated squarers save a huge number of DSPs (10 DSPs for DP)

24

Conclusions)

@ DSP resources can be saved by exploiting the flexibility of the
FPGA target

o flexible small granularity multipliers give best results for this
techniques

@ the place for this algorithms is in vendor tools

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Conclusions

@ DSP resources can be saved by exploiting the flexibility of the
FPGA target

o flexible small granularity multipliers give best results for this
techniques

@ the place for this algorithms is in vendor tools

Future work
@ obtain results for Altera targets
o currently working at the generic implementation of the tilling
algorithm

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Conclusions

@ DSP resources can be saved by exploiting the flexibility of the
FPGA target

o flexible small granularity multipliers give best results for this
techniques

@ the place for this algorithms is in vendor tools

Future work
@ obtain results for Altera targets

o currently working at the generic implementation of the tilling
algorithm

Squarers and Karatsuba found in FloPoCo
http://www.ens-1lyon.fr/LIP/Arenaire/Ware/FloPoCo/

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Thank you for your attention !

Questions ?

26

	Context of this work
	Karatsuba-Ofman algorithm
	Non-standard tilings
	Squarers
	Conclusions

