Large multipliers with fewer DSP blocks

FPI 09

Florent de Dinechin, Bogdan Pasca projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon, France

Outline

Context of this work

Karatsuba-Ofman algorithm

Non-standard tilings

Squarers

Conclusions

"Large" - multiplier that consumes ≥ 2 embedded multipliers

3

Let:

k - an integer parameter

X,Y - 2k-bit integers to multiply.

Let:

k - an integer parameter X,Y - 2k-bit integers to multiply.

Let:

k - an integer parameter X,Y - 2k-bit integers to multiply.

Let:

k - an **integer parameter** X,Y - 2k-bit **integers to multiply**.

3

Let:

k - an integer parameter X,Y - 2k-bit integers to multiply.

$$X = 2^{k}X_{1} + X_{0}$$

$$Y = 2^{k}Y_{1} + Y_{0}$$

$$0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0$$

$$0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0$$

$$0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$$

$$0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$$

1

Let:

k - an **integer parameter** X,Y - 2k-bit **integers to multiply**.

If **k=embedded multiplier width** then need **4** embedded multipliers for 2k-bit multiplication

Let:

k - an **integer parameter** X,Y - 2k-bit **integers to multiply**.

If **k=embedded multiplier width** then need **4** embedded multipliers for 2k-bit multiplication

Generalization

 $\forall p > 1$, numbers of size p(k-1)+1 to pk can be decomposed into pk-bit numbers \Rightarrow architecture consuming p^2 embedded multipliers.

3

Xilinx - DSP-block evolution

VirtexII-Pro

• starts-off as a 18 × 18 signed multiplier (k=17)

VirtexIV - DSP48

- multiplier followed by a 48-bit adder/subtracter unit
- adder/subtracter inputs are cascadable
- optional registers present

VirtexV - DSP48E

- asymmetrical multiplier of 18 × 25 signed
- 3-operand adder/subtracter, one input coming from global routing

Xilinx - DSP-block evolution

VirtexII-Pro

• starts-off as a 18×18 signed multiplier (k=17)

VirtexIV - DSP48

- multiplier followed by a 48-bit adder/subtracter unit
- adder/subtracter inputs are cascadable
- optional registers present

VirtexV - DSP48E

- asymmetrical multiplier of 18 × 25 signed
- 3-operand adder/subtracter, one input coming from global routing

Xilinx - DSP-block evolution

VirtexII-Pro

• starts-off as a 18×18 signed multiplier (k=17)

VirtexIV - DSP48

- multiplier followed by a 48-bit adder/subtracter unit
- adder/subtracter inputs are cascadable
- optional registers present

VirtexV - DSP48F

- asymmetrical multiplier of 18 × 25 signed
- 3-operand adder/subtracter, one input coming from global routing

Xilinx - DSP-block evolution

VirtexII-Pro

• starts-off as a 18×18 signed multiplier (k=17)

VirtexIV - DSP48

- multiplier followed by a 48-bit adder/subtracter unit
- adder/subtracter inputs are cascadable
- optional registers present

VirtexV - DSP48E

- asymmetrical multiplier of 18 × 25 signed
- 3-operand adder/subtracter, one input coming from global routing

Altera - DSP-block evolution

Stratix, Stratix-II

- four 18 × 18 multipliers (may function as unsigned)
- two levels of adders
- can perform:
 - eight 9x9 products
 - four 18x18 products independently or
 - one 36x36-bit product or
 - one 18x18-bit complex product

Stratix III, IV

- two Stratix-II DSPs are coupled to form the new DSP
- neighboring half-DSPs may be cascaded
- less flexible, limited DSP bandwidth: half-DSP cannot be split into 4 independent 18x18-bit products

Altera - DSP-block evolution

Stratix, Stratix-II

- four 18 × 18 multipliers (may function as unsigned)
- two levels of adders
- can perform:
 - eight 9x9 products
 - four 18x18 products independently or
 - one 36x36-bit product or
 - one 18x18-bit complex product

Stratix III, IV

- two Stratix-II DSPs are coupled to form the new DSP
- neighboring half-DSPs may be cascaded
- less flexible, limited DSP bandwidth: half-DSP cannot be split into 4 independent 18x18-bit products

Altera - DSP-block evolution

Stratix, Stratix-II

- four 18 × 18 multipliers (may function as unsigned)
- two levels of adders
- can perform:
 - eight 9x9 products
 - four 18x18 products independently or
 - one 36x36-bit product or
 - one 18x18-bit complex product

Stratix III, IV

- two Stratix-II DSPs are coupled to form the new DSP
- neighboring half-DSPs may be cascaded
- less flexible, limited DSP bandwidth: half-DSP cannot be split into 4 independent 18x18-bit products

The premise

DSP-blocks are a scarce resource when accelerating double precision floating-point applications ¹

we give
Three recipes for saving DSPs

 $^{^{1}\}text{D.}$ Strenski, FPGA floating point performance – a pencil and paper evaluation. HPCWire, Jan. 2007.

trading multiplications for additions

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Basic principle for two way splitting

$$X = 2^k X_1 + X_0$$
 and $Y = 2^k Y_1 + Y_0$

- computation goal: $XY = 2^{2k}X_1Y_1 + 2^k(X_1Y_0 + X_0Y_1) + X_0Y_0$
- precompute $D_X = X_1 X_0$ and $D_Y = Y_1 Y_0$
- make the observation: $X_1 Y_0 + X_0 Y_1 = X_1 Y_1 + X_0 Y_0 D_X D_Y$
- XY requires only 3 DSP blocks (X_1Y_1, X_0Y_0, D_XD_Y)
- overhead: two k-bit and one 2k-bit subtraction
- overhead ≪ DSP-block emulation

Implementation – 34x34bit multiplier on Virtex-4

fairly trivial starting from the equation:

$$XY = 2^{34}X_1Y_1 + 2^{17}(X_1Y_1 + X_0Y_0 - D_XD_Y) + X_0Y_0$$

- $X_1Y_1 + X_0Y_0 D_XD_Y$ is implemented inside the DSPs
- need to recover $X_1 Y_1$ with a subtraction

g

Results - 34x34bit multiplier on Virtex-4

	latency	freq.	slices	DSPs
LogiCore	6	447	26	4
LogiCore	3	176	34	4
K-O-2	3	317	95	3

- trade-off one DSP-block for 69 slices*
- *frequency bottleneck of 317MHz caused by SRL16
- larger frequency with more slices (disable shift register extraction)

Three way splitting

Consider X and Y of size 3k:

$$X = 2^{2k}X_2 + 2^kX_1 + X_0$$

$$Y = 2^{2k}Y_2 + 2^kY_1 + Y_0$$

Three way splitting

Consider X and Y of size 3k:

$$X = 2^{2k}X_2 + 2^kX_1 + X_0$$

$$Y = 2^{2k}Y_2 + 2^kY_1 + Y_0$$

Compute the products:

$$P_{22} = X_2 Y_2 P_{11} = X_1 Y_1 P_{00} = X_0 Y_0$$

$$P_{21} = (X_2 - X_1) \times (Y_2 - Y_1) P_{10} = (X_1 - X_0) \times (Y_1 - Y_0) P_{20} = (X_2 - X_0) \times (Y_2 - Y_0)$$

11

Three way splitting

Consider X and Y of size 3k:

$$X = 2^{2k}X_2 + 2^kX_1 + X_0$$

$$Y = 2^{2k}Y_2 + 2^kY_1 + Y_0$$

Compute the products:

$$P_{22} = X_2 Y_2 P_{11} = X_1 Y_1 P_{00} = X_0 Y_0$$

$$P_{21} = (X_2 - X_1) \times (Y_2 - Y_1) P_{10} = (X_1 - X_0) \times (Y_1 - Y_0) P_{20} = (X_2 - X_0) \times (Y_2 - Y_0)$$

The product XY uses **6 DSPs** instead of 9:

$$XY = 2^{4k}P_{22} + 2^{3k}(P_{22} + P_{11} - P_{21}) + 2^{2k}(P_{22} + P_{11} + P_{00} - P_{20}) + 2^{k}(P_{11} + P_{00} - P_{10}) + P_{00}$$

	latency	freq.	slices	DSPs
LogiCore	11	353	185	9
LogiCore	6	264	122	9
K-O-3*	6	317	331	6

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)
- the results for K-O-3* are obtained with ISE 9.2i and could not be reproduced with ISE 11.1.

	latency	freq.	slices	DSPs
LogiCore	11	353	185	9
LogiCore	6	264	122	9
K-O-3*	6	317	331	6

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)
- the results for K-O-3* are obtained with ISE 9.2i and could not be reproduced with ISE 11.1.

	latency	freq.	slices	DSPs
LogiCore	11	353	185	9
LogiCore	6	264	122	9
K-O-3*	6	317	331	6

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)
- the results for K-O-3* are obtained with ISE 9.2i and could not be reproduced with ISE 11.1.

	latency	freq.	slices	DSPs
LogiCore	11	353	185	9
LogiCore	6	264	122	9
K-O-3*	6	317	331	6

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)
- the results for K-O-3* are obtained with ISE 9.2i and could not be reproduced with ISE 11.1.

	latency	freq.	slices	DSPs
LogiCore	11	353	185	9
LogiCore	6	264	122	9
K-O-3*	6	317	331	6

- reduced DSP usage from 9 to 6
- overhead of 6k LUTs for the pre-subtractions
- overhead of the remaining additions difficult to evaluate (most may be implemented inside DSP blocks)
- the results for K-O-3* are obtained with ISE 9.2i and could not be reproduced with ISE 11.1.

Non-standard tilings

new multiplier family

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- ullet translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

$$XY = 2^{3+1}X_{3:1}Y_{4:3} + 2^{4}X_{5:4}Y_{5:0} + X_{3:0}Y_{2:0} + 2^{3}X_{0}Y_{5:3} + 2^{1+5}X_{3:1}Y_{5}$$

- classical binary multiplication
- all subproducts can be properly located inside the diamond
- create a rectangle by forgetting the shifts
- fill rectangle with tiles
- translate the tiling into an architecture $XY = \sum tile_contribution$

$$tile_contribution = 2^{upper_right_cornerX + Y} X_{projection} Y_{projection}$$

Non-standard tilings

- optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)
- classical decomposition may produce suboptimal results
- translate the operand decomposition into a tiling problem

Tiling principle

- start-off with a rectangle of size X.width × Y.width
- and **tiles** of size $P \times Q$ where:
 - $P \le embeddedMultiplier.width1$ and $(P \le 24)$
 - $Q \le embeddedMultiplier.width2 (Q \le 17)$
- place tiles so to fill-up the initial rectangle
- directly translate the placement into an architecture
- decide which multiplications are performed in LUTs

Tilings – 53×53 -bit multiplication on Virtex5

- standard tiling \equiv classical decomposition (12 DSPs)
- Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)
- our proposed tiling does it in 8 DSPs and a few LUTs

Tiling Architecture - 53x53bit

- $X_{24:33}Y_{24:33}$ (10x10 multiplier) probably best implemented in LUTs.
- parenthesis makes best use of DSP48E internal adders (17-bit shifts)

Tiling Results

58x58 multipliers on Virtex-5 (5vlx50ff676-3)²

	latency	Freq.	REGs	LUTs	DSPs
LogiCore	14	440	300	249	10
LogiCore	8	338	208	133	10
LogiCore	4	95	208	17	10
Tiling	4	366	247	388	8

Remarks

- save 2 DSP48E for a few LUTs/REGs
- huge latency save at a comparable frequency
- good use of internal adders due to the 17-bit shifts

²Results for 53-bits are almost identical

simple methods to save resources

- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead*.

- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with k = 17 on a Virtex-4

$$\leq$$
 34 $-$ bit

$$(2^k X_1 + X_0)^2 = 2^{2k} X_1^2 + \frac{2}{2} \cdot 2^k X_1 X_0 + X_0^2$$

- appear in norms, statistical computations, polynomial evaluation...
- dedicated squarer saves as many DSP blocks as the Karatsuba-Ofman algorithm, but without its overhead*.

Squaring with k = 17 on a Virtex-4

$$\leq$$
 34 $-$ bit

$$(2^k X_1 + X_0)^2 = 2^{2k} X_1^2 + \frac{2}{2} \cdot 2^k X_1 X_0 + X_0^2$$

 $\begin{array}{|c|c|c|c|}\hline X_0X_1 & X_0^2 \\ \hline & X_1^2 & X_0X_1 \\ \hline \end{array}$

< 51*bit*

$$(2^{2k}X_2 + 2^kX_1 + X_0)^2 = 2^{4k}X_2^2 + 2^{2k}X_1^2 + X_0^2 + 2 \cdot 2^{3k}X_2X_1 + 2 \cdot 2^{2k}X_2X_0 + 2 \cdot 2^kX_1X_0$$

*However ...

$$(2^k X_1 + X_0)^2 = 2^{34} X_1^2 + 2^{18} X_1 X_0 + X_0^2$$

- shifts of 0, 18, 34 the previous equation
- shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
- the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

*However ...

$$(2^k X_1 + X_0)^2 = 2^{34} X_1^2 + 2^{18} X_1 X_0 + X_0^2$$

- shifts of 0, 18, 34 the previous equation
- shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting
- the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

Workaround for \leq 33-bit multiplications

rewrite equation:

$$(2^{17}X_1 + X_0)^2 = 2^{34}X_1^2 + 2^{17}(2X_1)X_0 + X_0^2$$

• compute $2X_1$ by shifting X_1 by one bit before inputing into DSP48 block

Results – 32-bit and 53-bit squarers on Virtex-4

	latency	frequency	slices	DSPs	bits	
LogiCore	6	489	59	4		
LogiCore	3	176	34	4	32	
Squarer	3	317	18	3		
LogiCore	18	380	279	16		
LogiCore	7	176	207	16	53	
Squarer	7	317	332	6		

- DSPs saved without much overhead
- impressive 10 DSPs saved for double precision squarer

Squarers on Virtex5 using tilings

- the tiling technique can be extended to squaring
- squarer architectures for 53x53-bit

Issues

- red squares are computed twice thus need be subtracted.
- thanks to symmetry diagonal squares of size n should consume only n(n+1)/2 LUTs instead of n^2 .
- no implementation results ... yet

Summary

- Karatsuba-Ofman reduces DSP cost from 4 to 3, 9 to 6, 16 to 10 at small price
- introduced original family of multipliers and squarer architectures for Virtex-5 using the concept of tiling
- dedicated squarers save a huge number of DSPs (10 DSPs for DP)

Conclusions

- DSP resources can be saved by exploiting the flexibility of the FPGA target
- flexible small granularity multipliers give best results for this techniques
- the place for this algorithms is in vendor tools

Conclusions

- DSP resources can be saved by exploiting the flexibility of the FPGA target
- flexible small granularity multipliers give best results for this techniques
- the place for this algorithms is in vendor tools

Future work

- obtain results for Altera targets
- currently working at the generic implementation of the tilling algorithm

Conclusions

- DSP resources can be saved by exploiting the flexibility of the FPGA target
- flexible small granularity multipliers give best results for this techniques
- the place for this algorithms is in vendor tools

Future work

- obtain results for Altera targets
- currently working at the generic implementation of the tilling algorithm

Squarers and Karatsuba found in FloPoCo http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

Thank you for your attention!

Questions?