
Large multipliers with fewer DSP blocks

FPL09

Florent de Dinechin, Bogdan Pasca
projet Arénaire, ENS-Lyon/INRIA/CNRS/Université de Lyon, France



Outline

Context of this work

Karatsuba-Ofman algorithm

Non-standard tilings

Squarers

Conclusions

2



Large multipliers using embedded multipliers

”Large” - multiplier that consumes ≥ 2 embedded multipliers

Let:

k - an integer parameter

X,Y - 2k-bit integers to multiply.

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter

X,Y - 2k-bit integers to multiply.

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

01 1 1 0 1

001011

X

Y

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

01 1

001011

0 11

k=3

X

Y

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

k=3

X1 X0

Y1 Y0

X = 2kX1 + X0

Y = 2kY1 + Y0

X

Y

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

01 1

001011

0 11

1010 0 0

011110

1010 0 0

011110

X = 2kX1 + X0

Y = 2kY1 + Y0

X

Y

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

X1 X0

Y1 Y0

Y0

Y0 X1

X0

X1

Y1

X0

Y1

X = 2kX1 + X0

Y = 2kY1 + Y0

X

Y

+2kY 0X1
+2kY 1X0

+22kY 1X1

Y 0X0

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Large multipliers using embedded multipliers

Let:

k - an integer parameter
X,Y - 2k-bit integers to multiply.

X1 X0

Y1 Y0

Y0

Y0 X1

X0

X1

Y1

X0

Y1

X = 2kX1 + X0

Y = 2kY1 + Y0

X

Y

+2kY 0X1
+2kY 1X0

+22kY 1X1

Y 0X0

If k=embedded multiplier width then
need 4 embedded multipliers for 2k-bit multiplication

Generalization

∀ p > 1, numbers of size p(k − 1) + 1 to pk can be decomposed into p
k-bit numbers ⇒ architecture consuming p2 embedded multipliers.

3



Embedded multipliers and more ...

Xilinx - DSP-block evolution

VirtexII-Pro

starts-off as a 18× 18 signed multiplier (k=17)

VirtexIV – DSP48

multiplier followed by a 48-bit adder/subtracter unit
adder/subtracter inputs are cascadable
optional registers present

VirtexV – DSP48E

asymmetrical multiplier of 18× 25 signed
3-operand adder/subtracter, one input coming from
global routing

4



Embedded multipliers and more ...

Xilinx - DSP-block evolution

VirtexII-Pro

starts-off as a 18× 18 signed multiplier (k=17)

VirtexIV – DSP48

multiplier followed by a 48-bit adder/subtracter unit
adder/subtracter inputs are cascadable
optional registers present

VirtexV – DSP48E

asymmetrical multiplier of 18× 25 signed
3-operand adder/subtracter, one input coming from
global routing

4



Embedded multipliers and more ...

Xilinx - DSP-block evolution

VirtexII-Pro

starts-off as a 18× 18 signed multiplier (k=17)

VirtexIV – DSP48

multiplier followed by a 48-bit adder/subtracter unit
adder/subtracter inputs are cascadable
optional registers present

VirtexV – DSP48E

asymmetrical multiplier of 18× 25 signed
3-operand adder/subtracter, one input coming from
global routing

4



Embedded multipliers and more ...

Xilinx - DSP-block evolution

VirtexII-Pro

starts-off as a 18× 18 signed multiplier (k=17)

VirtexIV – DSP48

multiplier followed by a 48-bit adder/subtracter unit
adder/subtracter inputs are cascadable
optional registers present

VirtexV – DSP48E

asymmetrical multiplier of 18× 25 signed
3-operand adder/subtracter, one input coming from
global routing

4



Embedded multipliers and more ...

Altera - DSP-block evolution

Stratix, Stratix-II

four 18× 18 multipliers (may function as unsigned)
two levels of adders
can perform:

eight 9x9 products
four 18x18 products independently or
one 36x36-bit product or
one 18x18-bit complex product

Stratix III, IV

two Stratix-II DSPs are coupled to form the new DSP
neighboring half-DSPs may be cascaded
less flexible, limited DSP bandwidth: half-DSP
cannot be split into 4 independent 18x18-bit products

5



Embedded multipliers and more ...

Altera - DSP-block evolution

Stratix, Stratix-II

four 18× 18 multipliers (may function as unsigned)
two levels of adders
can perform:

eight 9x9 products
four 18x18 products independently or
one 36x36-bit product or
one 18x18-bit complex product

Stratix III, IV

two Stratix-II DSPs are coupled to form the new DSP
neighboring half-DSPs may be cascaded
less flexible, limited DSP bandwidth: half-DSP
cannot be split into 4 independent 18x18-bit products

5



Embedded multipliers and more ...

Altera - DSP-block evolution

Stratix, Stratix-II

four 18× 18 multipliers (may function as unsigned)
two levels of adders
can perform:

eight 9x9 products
four 18x18 products independently or
one 36x36-bit product or
one 18x18-bit complex product

Stratix III, IV

two Stratix-II DSPs are coupled to form the new DSP
neighboring half-DSPs may be cascaded
less flexible, limited DSP bandwidth: half-DSP
cannot be split into 4 independent 18x18-bit products

5



The premise

DSP-blocks are a scarce resource when accelerating double precision
floating-point applications 1

we give

Three recipes for saving DSPs

1D. Strenski, FPGA floating point performance – a pencil and paper evaluation.
HPCWire, Jan. 2007.

6



Karatsuba-Ofman algorithm

trading multiplications for additions

7



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



The Karatsuba-Ofman algorithm

Basic principle for two way splitting

split X and Y into two chunks:

X = 2kX1 + X0 and Y = 2kY1 + Y0

computation goal: XY = 22kX1Y1 + 2k(X1Y0 + X0Y1) + X0Y0

precompute DX = X1 − X0 and DY = Y1 − Y0

make the observation: X1Y0 + X0Y1 = X1Y1 + X0Y0 − DXDY

XY requires only 3 DSP blocks (X1Y1, X0Y0, DXDY )

overhead: two k-bit and one 2k-bit subtraction

overhead � DSP-block emulation

8



Implementation – 34x34bit multiplier on Virtex-4

fairly trivial starting from the equation:

XY = 234X1Y1 + 217(X1Y1 + X0Y0 − DXDY ) + X0Y0

Y1

X1

z

X0

Y0

Y1
z

51

17

17

17

17

18

18

34

36

34

34

X0

Y0

X1

X0Y0

X0Y0(33 : 17)

X1Y1

X1Y1 + X0Y0 − DXDY

X0Y0(16 : 0)

35 XY
68

DSP48

DSP48

DSP48

X1Y1 + X0Y0 − DXDY is implemented inside the DSPs

need to recover X1Y1 with a subtraction

9



Results - 34x34bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 6 447 26 4

LogiCore 3 176 34 4

K-O-2 3 317 95 3

Remarks

trade-off one DSP-block for 69 slices∗

∗frequency bottleneck of 317MHz caused by SRL16

larger frequency with more slices (disable shift register extraction)

10



Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + X0

Y = 22kY2 + 2kY1 + Y0

Compute the products:

P22 = X2Y2 P21 = (X2 − X1)× (Y2 − Y1)
P11 = X1Y1 P10 = (X1 − X0)× (Y1 − Y0)
P00 = X0Y0 P20 = (X2 − X0)× (Y2 − Y0)

The product XY uses 6 DSPs instead of 9:

XY = 24kP22

+ 23k(P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

11



Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + X0

Y = 22kY2 + 2kY1 + Y0

Compute the products:

P22 = X2Y2 P21 = (X2 − X1)× (Y2 − Y1)
P11 = X1Y1 P10 = (X1 − X0)× (Y1 − Y0)
P00 = X0Y0 P20 = (X2 − X0)× (Y2 − Y0)

The product XY uses 6 DSPs instead of 9:

XY = 24kP22

+ 23k(P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

11



Three way splitting

Consider X and Y of size 3k:

X = 22kX2 + 2kX1 + X0

Y = 22kY2 + 2kY1 + Y0

Compute the products:

P22 = X2Y2 P21 = (X2 − X1)× (Y2 − Y1)
P11 = X1Y1 P10 = (X1 − X0)× (Y1 − Y0)
P00 = X0Y0 P20 = (X2 − X0)× (Y2 − Y0)

The product XY uses 6 DSPs instead of 9:

XY = 24kP22

+ 23k(P22 + P11 − P21)
+ 22k(P22 + P11 + P00 − P20)
+ 2k(P11 + P00 − P10)
+ P00

11



Results – 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

12



Results – 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

12



Results – 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

12



Results – 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

12



Results – 51x51bit multiplier on Virtex-4

latency freq. slices DSPs

LogiCore 11 353 185 9

LogiCore 6 264 122 9

K-O-3* 6 317 331 6

Remarks:

reduced DSP usage from 9 to 6

overhead of 6k LUTs for the pre-subtractions

overhead of the remaining additions difficult to evaluate (most may
be implemented inside DSP blocks)

the results for K-O-3* are obtained with ISE 9.2i and could not be
reproduced with ISE 11.1.

12



Non-standard tilings

new multiplier family

13



From multiplication to tiling

classical binary multiplication

all subproducts can be properly located inside the diamond

create a rectangle by forgetting the shifts

fill rectangle with tiles

translate the tiling into an architecture XY =
∑

tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

X5:0

Y5:0

∑

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

∑
Y2:0

X2:0

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

∑
X5:3

Y5:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

∑
X3:1

Y4:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

∑
X3:1

Y4:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

X
0

05

5

1

3Y

23+1X3:1Y4:3

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



From multiplication to tiling

X
0

05

5

1

3Y

23+1X3:1Y4:3

+21+5X3:1Y5

+23X0Y5:3

+X3:0Y2:0

+24X5:4Y5:0

XY =

classical binary multiplication
all subproducts can be properly located inside the diamond
create a rectangle by forgetting the shifts
fill rectangle with tiles
translate the tiling into an architecture XY =

∑
tile contribution

tile contribution = 2upper right cornerX+Y XprojectionYprojection

14



Non-standard tilings

optimize use of rectangular multipliers on Virtex5,6 (25x18 signed)

classical decomposition may produce suboptimal results

translate the operand decomposition into a tiling problem

Tiling principle

start-off with a rectangle of size X .width × Y .width

and tiles of size P × Q where:

P ≤ embeddedMultiplier .width1 and (P ≤ 24)
Q ≤ embeddedMultiplier .width2 (Q ≤ 17)

place tiles so to fill-up the initial rectangle

directly translate the placement into an architecture

decide which multiplications are performed in LUTs

15



Tilings – 53× 53-bit multiplication on Virtex5

51

48

(a) standard tiling

0
0

16

33

163358

58

(b) Logicore tiling

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4

M6

M7
M8

M5

(c) proposed tiling

standard tiling ≡ classical decomposition (12 DSPs)

Logicore 11.1 tiling uses 10 DSPs (4 DSPs used as 17x17-bit)

our proposed tiling does it in 8 DSPs and a few LUTs

16



Tiling Architecture - 53x53bit

34

0

0

24

41

58 34 17

41 24

17

M1

M2

M3M4

M6

M7
M8

M5

XY = X0:23Y0:16 (M1)
+ 217(X0:23Y17:33 (M2)
+ 217(X0:16Y34:57 (M3)
+ 217X17:33Y34:57)) (M4)
+ 224(X24:40Y0:23 (M8)
+ 217(X41:57Y0:23 (M7)
+ 217(X34:57Y24:40 (M6)
+ 217X34:57Y41:57))) (M5)
+ 248X24:33Y24:33

X24:33Y24:33 (10x10 multiplier) probably best implemented in LUTs.

parenthesis makes best use of DSP48E internal adders (17-bit
shifts)

17



Tiling Results

58x58 multipliers on Virtex-5 (5vlx50ff676-3)2

latency Freq. REGs LUTs DSPs

LogiCore 14 440 300 249 10

LogiCore 8 338 208 133 10

LogiCore 4 95 208 17 10

Tiling 4 366 247 388 8

Remarks

save 2 DSP48E for a few LUTs/REGs

huge latency save at a comparable frequency

good use of internal adders due to the 17-bit shifts

2Results for 53-bits are almost identical
18



Squarers

simple methods to save resources

19



Squarers

appear in norms, statistical computations, polynomial evaluation...

dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead∗.

Squaring with k = 17 on a Virtex-4

≤ 34− bit

(2kX1 + X0)2 = 22kX 2
1 + 2 · 2kX1X0 + X 2

0

X0
2

X1
2

X0X1

X0X1

≤ 51bit

(22kX2 + 2kX1 + X0)2 = 24kX 2
2 + 22kX 2

1 + X 2
0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2 · 2kX1X0

X0
2

X1
2

X0X1

X0X1

X0X2

X0X2

X1X2

X1X2X2
2

20



Squarers

appear in norms, statistical computations, polynomial evaluation...

dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead∗.

Squaring with k = 17 on a Virtex-4

≤ 34− bit

(2kX1 + X0)2 = 22kX 2
1 + 2 · 2kX1X0 + X 2

0

X0
2

X1
2

X0X1

X0X1

≤ 51bit

(22kX2 + 2kX1 + X0)2 = 24kX 2
2 + 22kX 2

1 + X 2
0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2 · 2kX1X0

X0
2

X1
2

X0X1

X0X1

X0X2

X0X2

X1X2

X1X2X2
2

20



Squarers

appear in norms, statistical computations, polynomial evaluation...

dedicated squarer saves as many DSP blocks as the
Karatsuba-Ofman algorithm, but without its overhead∗.

Squaring with k = 17 on a Virtex-4

≤ 34− bit

(2kX1 + X0)2 = 22kX 2
1 + 2 · 2kX1X0 + X 2

0

X0
2

X1
2

X0X1

X0X1

≤ 51bit

(22kX2 + 2kX1 + X0)2 = 24kX 2
2 + 22kX 2

1 + X 2
0

+ 2 · 23kX2X1

+ 2 · 22kX2X0

+ 2 · 2kX1X0

X0
2

X1
2

X0X1

X0X1

X0X2

X0X2

X1X2

X1X2X2
2

20



*However ...

(2kX1 + X0)2 = 234X 2
1 + 218X1X0 + X 2

0

shifts of 0, 18, 34 the previous equation

shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting

the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

Workaround for ≤ 33-bit multiplications

rewrite equation:

(217X1 + X0)2 = 234X 2
1 + 217(2X1)X0 + X 2

0

compute 2X1 by shifting X1 by one bit before inputing into DSP48
block

21



*However ...

(2kX1 + X0)2 = 234X 2
1 + 218X1X0 + X 2

0

shifts of 0, 18, 34 the previous equation

shifts of 0, 18, 34, 35, 52, 68 for 3-way splitting

the DSP48 of VirtexIV allow shifts of 17 so internal adders unused

Workaround for ≤ 33-bit multiplications

rewrite equation:

(217X1 + X0)2 = 234X 2
1 + 217(2X1)X0 + X 2

0

compute 2X1 by shifting X1 by one bit before inputing into DSP48
block

21



Results – 32-bit and 53-bit squarers on Virtex-4

latency frequency slices DSPs bits

LogiCore 6 489 59 4
32LogiCore 3 176 34 4

Squarer 3 317 18 3

LogiCore 18 380 279 16
53LogiCore 7 176 207 16

Squarer 7 317 332 6

DSPs saved without much overhead

impressive 10 DSPs saved for double precision squarer

22



Squarers on Virtex5 using tilings

the tiling technique can be extended to squaring

squarer architectures for 53x53-bit

36

53

17

0

M1

M2

M3 M6M5

M4

0
41 24 0

19

36

53

M1

M2

M3

M4
M5

Issues

red squares are computed twice thus need be subtracted.

thanks to symmetry diagonal squares of size n should consume only
n(n + 1)/2 LUTs instead of n2 .

no implementation results ... yet

23



Summary

Karatsuba-Ofman reduces DSP cost from 4 to 3, 9 to 6, 16 to 10
at small price

introduced original family of multipliers and squarer architectures
for Virtex-5 using the concept of tiling

dedicated squarers save a huge number of DSPs (10 DSPs for DP)

24



Conclusions

DSP resources can be saved by exploiting the flexibility of the
FPGA target

flexible small granularity multipliers give best results for this
techniques

the place for this algorithms is in vendor tools

Future work

obtain results for Altera targets

currently working at the generic implementation of the tilling
algorithm

Squarers and Karatsuba found in FloPoCo
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/


Conclusions

DSP resources can be saved by exploiting the flexibility of the
FPGA target

flexible small granularity multipliers give best results for this
techniques

the place for this algorithms is in vendor tools

Future work

obtain results for Altera targets

currently working at the generic implementation of the tilling
algorithm

Squarers and Karatsuba found in FloPoCo
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/


Conclusions

DSP resources can be saved by exploiting the flexibility of the
FPGA target

flexible small granularity multipliers give best results for this
techniques

the place for this algorithms is in vendor tools

Future work

obtain results for Altera targets

currently working at the generic implementation of the tilling
algorithm

Squarers and Karatsuba found in FloPoCo
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

25

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/


Thank you for your attention !

Questions ?

26


	Context of this work
	Karatsuba-Ofman algorithm
	Non-standard tilings
	Squarers
	Conclusions

