
CS 200

Computer Systems

Programming I

Unit 8

Arithmetic and Logical
Operations

Instructor: Dave Archer – darcher@cs.pdx.edu
Copyright © 2008, 2009 Portland State University

©2003-2004 Morrissey Computer Systems Programming I 2

IA32 leal Instruction

 Load Effective Address (Long)

 A convenient variant of the movl instruction

 leal S, D  D ← &S

 Loads the address of S in D, not the contents

 Destination must be a register

 Why would we want an address in a register?

©2003-2004 Morrissey Computer Systems Programming I 3

leal Practice
%eax = x, %ecx = y

Expression Result in %edx

leal 6(%eax), %edx

leal (%eax, %ecx), %edx

leal (%eax, %ecx, 4), %edx

leal 7(%eax, %eax, 8), %edx

leal 0xA(, %ecx, 4), %edx

leal 9(%eax, %ecx, 2), %edx

leal (%ecx, %eax, 4), %edx

leal 1(, %eax, 2), %edx

leal 0xFF(%ecx, %eax, 3), %edx

©2003-2004 Morrissey Computer Systems Programming I 4

IA32 leal Instruction

 Compilers often use leal for simple math

 If %edx = x,

 leal 7(%edx, %edx, 4)  5x + 7

 Multiply and add all in one instruction

 Result ends up in edx

 What if x is a signed integer and we get negative

overflow?

©2003-2004 Morrissey Computer Systems Programming I 5

Unary Operations

 Unary  one operand

 inc – increment  D ← D + 1

 dec – decrement  D ← D - 1

 neg – negate  D ← -D

 not – complement  D ← ~D

 Examples

 incl (%esp)

 Increment 32-bit quantity at top of stack

 notl %eax

 Complement 32-bit quantity in register %eax

©2003-2004 Morrissey Computer Systems Programming I 6

Binary Operations

 A little bit tricky

 The second operand is used as both a source
and destination

 A bit like C operators „+=„, „-=„, etc.

 Format

 <op> S, D  D = D <op> S

 Can be confusing

 subl S, D  D = D – S

 Not S – D!! Be careful

©2003-2004 Morrissey Computer Systems Programming I 7

Binary Operations

 add S, D D = D + S

 sub S, D D = D – S

 imul S, D  D = D * S

 xor S, D  D = D  S

 or S, D  D = D | S

 and S, D D = D & S

©2003-2004 Morrissey Computer Systems Programming I 8

Practice with Binary Ops
Address Value

0x100 0xFF

0x104 0xAB

0x108 0x13

0x10C 0x11

Register Value

%eax 0x100

%ecx 0x1

%edx 0x3

Instruction Destination Value

addl %ecx, (%eax)

subl %edx, 4(%eax)

imull $16, (%eax, %edx, 4)

incl 8(%eax)

decl %ecx

subl %edx, %eax

xorl %eax, 4(%eax)

addl ($0x4, %eax), %esp

©2003-2004 Morrissey Computer Systems Programming I 9

Logical Operators in C

Bitwise operators == assembly instructions

 & , | , ^ , ~

Expression logical operators give “true” or “false” result

 &&, || , !

 False is integer 0, true is integer non-zero

Example

if (x & y){

… }

The expression in parentheses is true if what?

©2003-2004 Morrissey Computer Systems Programming I 10

Examples

int x, y;

For some processor, independent of the size of an
integer, write expressions without any “=“ signs that
are true if:
 x and y have any non-zero bits in common in their low

order byte

 x has any 1 bits at higher positions than the low order 8
bits

 x has no 1 bits at higher positions than the low order 8 bits

 x is zero

 x == y

©2003-2004 Morrissey Computer Systems Programming I 11

Shift Operations

 Not to be confused with their C counterparts!

 Arithmetic and logical shifts are possible

 <op> amount value

 sal k, D  D = D << k

 shl k, D  D = D << k

 sar k, D  D = D >> k, sign extend

 shr k, D  D = D >> k, zero fill

 Max shift is 32 bits, so k is either an immediate

byte, or register %cl

 %cl is byte 0 of register %ecx

©2003-2004 Morrissey Computer Systems Programming I 12

Shift Example

int shift_left_rightn(int x, int n)

{

x <<= 2;

x >>= n;

return x;

}

_shift_left2_rightn:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax ; get x

movl 12(%ebp), %ecx ; get n

popl %ebp

______________ ; x <<= 2;

______________ ; x >>= n;

ret

©2003-2004 Morrissey Computer Systems Programming I 13

More Practice
Address Value

0x100 0xFF

0x104 0xAB

0x108 0x13

0x10C 0x11

Register Value

%eax 0x100

%ecx 0x1

%edx 0x3

Instruction Destination Value

addw %cx, (%eax)

subb %dl, 4(%eax)

sarb %cl, (%eax)

sarl $2,(%eax)

shrb %cl,(%eax)

shll $8,%edx

©2003-2004 Morrissey Computer Systems Programming I 14

Compiler “Tricks”

 The compiler will try to generate efficient code

 Resultant assembly code may not readily map to C code,

but is functionally the same

int arith(int x, int y, int z)

{

int t1 = x+y;

int t2 = z*48;

int t3 = t1 & 0xFFFF;

int t4 = t2 * t3;

return t4;

}

movl 12(%ebp), %eax

movl 16(%ebp), %edx

addl 8(%ebp), %eax

leal (%edx, %edx, 2), %edx

sall $4, %edx

andl $65535, %eax

imull %eax, %edx

movl %edx, %eax

©2003-2004 Morrissey Computer Systems Programming I 15

Things That Make You Go

Hmm
_junk:

pushl %ebp

xorl %eax, %eax

movl %esp, %ebp

movl 8(%ebp), %ecx

xorl %edx, %edx

cmpl %ecx, %eax

jge L8

.p2align 4,,15

L6:

addl %edx, %eax

incl %edx

cmpl %ecx, %edx

jl L6

L8:

popl %ebp

ret

int junk(int n)

{

int i, v=0;

for (i=0; i < n; i++)

v += i;

return v;

}

©2003-2004 Morrissey Computer Systems Programming I 16

Integer Multiply

 imull <operand>

 One operand is in eax

 Or in al or ax for the shorter forms

 Other operand in register or memory

 64-bit result in eax:edx

 mul and imul have many forms

 This is truly not a RISC processor!

 See the programmer‟s reference manual

 Which still won‟t help you with Gnu gas

©2003-2004 Morrissey Computer Systems Programming I 17

Integer Divide

 idivl <operand>

 Has several forms (not as many as multiply)

Dividend Divisor Quotient Remainder

AX rm/8 AL AH

DX:AX r/m16 AX DX

EDX:EAX r/m32 EAX EDX

©2003-2004 Morrissey Computer Systems Programming I 18

Instruction Effect

imull S R[%edx]:R[%eax] ← S x R[%eax] ; signed

mull S R[%edx]:R[%eax] ← S x R[%eax] ; unsigned

cltd R[%edx]:R[%eax] ← SignExtend(R[%eax])

idivl S R[%edx] ← R[%edx]:R[%eax] mod S ; signed

R[%eax] ← R[%edx]:R[%eax]  S

divl S R[%edx] ← R[%edx]:R[%eax] mod S ; unsigned

R[%eax] ← R[%edx]:R[%eax]  S

R[%edx]:R[%eax] is viewed as a 64-bit quad word

©2003-2004 Morrissey Computer Systems Programming I 19

Example

Assume x is at %ebp+8, y at %ebp+12

movl 8(%ebp), %eax

imull 12(%ebp)

pushl %edx

pushl %eax

movl 8(%ebp), %eax

cltd

idivl 12(%ebp)

pushl %eax

pushl %edx

©2003-2004 Morrissey Computer Systems Programming I 20

Example

 Write an assembly routine that multiplies two

32-bit integers and returns the 64 bit result

 C prototype:

void product(int *a, int *b)

 Return high 32 bits in a and low 32 bits in b

 Assume this stack setup
.

.

.

a
return addr.

%ebp ebp

b

