CS 200
Computer Systems
Programming |

Unit 8
Arithmetic and Logical

Operations

Instructor: Dave Archer —darcher@cs.pdx.edu
Copyright © 2008, 2009 Portland State University

|IA32 leal Instruction

e Load Effective Address (Long)

A convenient variant of the movl instruction
ealS,D = D« &S
_oads the address of S in D, not the contents
Destination must be a register
Why would we want an address in a register?

©2003-2004 Morrissey Computer Systems Programming | 2

leal Practice

Yeax = X, Yoecx =y

Expression

Result in %edx

leal 6(%eax), %edx

leal (Yoeax, %ecx), %edx

leal (Y%0eax, %ecx, 4), %edx

leal 7(%eax, %eax, 8), %edx

leal OXA(, %ecx, 4), Y%edx

leal 9(%eax, %ecx, 2), %oedx

leal (%ecx, %eax, 4), %edx

leal 1(, %eax, 2), %oedx

leal OXFF(%ecx, %eax, 3), %edx

©2003-2004 Morrissey Computer Systems Programming |

|IA32 leal Instruction

e Compilers often use leal for simple math
If %0edx = X,
leal 7(%edx, %edx, 4) = 5x + 7

Multiply and add all in one instruction
Result ends up in edx

What if X Is a signed integer and we get negative
overflow?

©2003-2004 Morrissey Computer Systems Programming | 4

Unary Operations

e Unary = one operand

INC — Increment D« D+1
dec —decrement =D« D-1
neg — negate =D « -D
not — complement =D « ~D

e Examples

Incl (%0esp)
Increment 32-bit quantity at top of stack

notl %eax
Complement 32-bit quantity in register %eax

©2003-2004 Morrissey Computer Systems Programming | 5

Binary Operations

e A little bit tricky

The second operand is used as both a source
and destination

A bit like C operators ‘+=', -=', etc.
e Format

<op>S, D =D =D<o0op>S
e Can be confusing

subl S, D =D=D-S5

Not S — D! Be careful

©2003-2004 Morrissey Computer Systems Programming |

Binary Operations

e addS,D=D=D+S
e SUDS, D==D=D-S
e IMmulS, D =D=D*S
e XOr S, D =>D=D®S
eorS,D =D=D|S
eandS,D=D=D&S

©2003-2004 Morrissey Computer Systems Programming |

Practice with Binary Ops

Address Value Register Value
0x100 OxFF %eax 0x100
0x104 OxAB %ecx Ox1
0x108 0x13 Yoedx 0x3
0x10C Ox11

Instruction Destination Value

addl %ecx, (Yoeax)

subl %edx, 4(%eax)

imull $16, (Y%oeax, %edx, 4)

incl 8(%eax)

decl %ecx

subl %edx, %eax

xorl %eax, 4(%eax)

addl ($0x4, Y%eax), Yoesp

©2003-2004 Morrissey Computer Systems Programming |

Logical Operators in C

Bitwise operators == assembly instructions
&, |, "N, ~

Expression logical operators give “true” or “false” result
&&, ||, !
False is integer O, true Is integer non-zero

Example
if (x & y){
}
The expression in parentheses is true if what?

©2003-2004 Morrissey Computer Systems Programming |

Examples

Int X, y;
For some processor, independent of the size of an

integer, write expressions without any “=" signs that
are true If:

X and y have any non-zero bits in common in their low
order byte

X has any 1 bits at higher positions than the low order 8
bits

X has no 1 bits at higher positions than the low order 8 bits
X IS zero

X ==Yy

©2003-2004 Morrissey Computer Systems Programming | 10

Shift Operations

e Not to be confused with their C counterparts!
e Arithmetic and logical shifts are possible
e <Op> amount value

sal k, D =D=D<<k

shl k, D —D=D<<k

sark, D — D = D >> k, sign extend
shrk, D — D =D >> k, zero fill

e Max shift is 32 bits, so k is either an immediate
byte, or register %cl
%ocl is byte O of register %ecx

©2003-2004 Morrissey Computer Systems Programming | 11

Shift Example

_shift_left2_rightn:

int shift_left_rightn(int x, int n)
{
X <<= 2;
X >>=n;
return X;

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax ;getx

©2003-2004 Morrissey

_— movl 12(%ebp), %ecx ; getn
popl %ebp
, X <<= 2;
, X >>=1;
ret

Computer Systems Programming |

12

More Practice

Address Value Register Value
0x100 OxFF %eax 0x100
0x104 OxAB %ecx Ox1
0x108 0x13 Yoedx Ox3
0x10C 0x11

Instruction Destination Value

addw %cx, (Yeax)

subb %dlI, 4(%eax)

sarb %cl, (%eax)

sarl $2,(%eax)

shrb %cl,(%eax)

shll $8,%edx

©2003-2004 Morrissey

Computer Systems Programming |

13

Compiler “Tricks”

e The compiler will try to generate efficient code

Resultant assembly code may not readily map to C code,
but is functionally the same

int arith(int x, int 'y, int z) movl 12(%ebp), Y%eax
1 movl 16(%ebp), Y%oedx
INttl = x+y; addl 8(%ebp), %eax
It t2 = 7*48,; leal (%edx, %edx, 2), %edx
Int t3 =t1 & OXFFFF; | ' sall $4, %edx
int t4 = t2 * t3; andl $65535, %eax
imull %eax, %edx
\ return t4; movl %edx, %eax

©2003-2004 Morrissey Computer Systems Programming | 14

Things That Make You Go

Hmm

int junk(int n)
{
int i, v=0;
for (i=0; i < n; i++)
V4=
return v;
}

_junk:
pushl %ebp

©2003-2004 Morrissey

xorl %eax, Yoeax
movl %esp, %ebp

%ecx

oeax

m 0
cmp 0ECX,
. jge L8

.p2align 4,,15

LG:
addl %edx, %eax
incl %edx
cmpl %ecx, %edx
j L6

L8:
popl %ebp
ret

Computer Systems Programming |

15

Integer Multiply

e imull <operand>
One operand Is in eax
Or in al or ax for the shorter forms
Other operand in register or memory
64-bit result in eax:edx

e mul and imul have many forms
This is truly not a RISC processor!

See the programmer’s reference manual
Which still won’t help you with Gnu gas

©2003-2004 Morrissey Computer Systems Programming |

16

Integer Divide

e 1divl <operand>
Has several forms (not as many as multiply)

Dividend Divisor Quotient Remainder
AX rm/8 AL AH

DX:AX r/ml16 AX DX
EDX:EAX |r/m32 EAX EDX

©2003-2004 Morrissey Computer Systems Programming | 17

Instruction Effect

imull S R[%edx]:R[%eax] «— S x R[%eaX] ; signed

mull S R[%edX]:R[%eax] — S x R[%eaX] ; unsigned

cltd R[%edx]:R[%eax] « SignExtend(R[%eax])

idivl S R[%edx] — R[%edx]:R[%eax] mod S ; signed
R[%eax] < R[%edXx]:R[%eax] + S

divl S R[%edXx] «— R[%edx]:R[%eax] mod S ; unsigned
R[%eaXx] < R[%edXx]:R[%eax] + S

R[%edx]:R[%eaXx] is viewed as a 64-bit quad word

©2003-2004 Morrissey

Computer Systems Programming |

18

Example

Assume X is at %ebp+8, y at %ebp+12

mov! 8(%ebp), %eax
imull 12(%ebp)

pushl %edx

pushl %eax

mov! 8(%ebp), %eax
cltd

idivl 12(%ebp)

pushl %eax

pushl %edx

©2003-2004 Morrissey Computer Systems Programming |

19

Example

e Write an assembly routine that multiplies two
32-bit integers and returns the 64 bit result

C prototype:
void product(int *a, int *b)
Return high 32 bits in a and low 32 bits in b

e Assume this stack setup

b
a
return addr.

%ebp > ebp

©2003-2004 Morrissey Computer Systems Programming | 20

