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1 Syntax Analysis

1.1 Cocke-Younger-Kasami (CYK) Algorithm

The Cocke-Younger-Kasami algorithm determines whether a string can be generated by a given context-
free grammar and, if so, how it can be generated. The algorithm is an example of dynamic programming.
The standard version of CYK can only recognize languages defined by context-free grammars in Chomsky
Normal Form (CNF). However, since any context-free grammar can be converted to CNF without too much
difficulty, CYK can be used to recognize any context-free language.

For the sake of simplicity, in what follows we consider grammars where each production has at most two
symbols. Example - grammar G :

S → SS

S → Ab

A→ aS

S → ab

Let w be a string. We define the boolean array Pw[α, i, j] where α is a grammar symbol and 1 6 i 6 j 6 |w|
in the following way :

The boolean value Pw[α, i, j] means that α derives the substring of w consisting of the ith through the
jth symbols in zero or more steps. Hence we have :

– α is a terminal : if α is the ith symbol of w then Pw[α, i, i] = true, else Pw[α, i, i] = false. Also,
Pw[α, i, j] = false for all i < j.

– α is a nonterminal : Pw[α, i, j] = true if there exists some production α→ βγ and some i 6 k < j s.t.
Pw[β, i, k] = true and Pw[γ, k+1, j] = true, or if there exists a production α→ γ s.t. Pw[γ, i, j] = true.

How many steps are necessary to compute Pw[α, i, j] for one α ?

What is the complexity to compute G ?

What is the condition that G generates w ? Example : w = aabbabab and the grammar given above. The
CYK array is filled in.
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Then, consider the context-free grammar G :

S → DE

D → HB

D → AB

H → AD

E → CE

A→ a

B → b

C → c

E → c

Apply the CYK algorithm for the string w = aabbcc (you can use a figure similar to the example).

1.2 Top Down Analysis : LL(1)

Exercise 1 Eliminate left recursions and left factors for the following grammar.

S → AEB

A→ Ax|Ay|Ba|a
E →= | 6=
B → Ab|b

Exercise 2 Consider the following grammar. Note that id, +, [, ], and “,” are terminals.

E → E + T |T

T → id|id[]|id[X]

X → E,E|E
– Eliminate left recursion in the grammar.
– Perform left factoring for the grammar.
– Compute the First set for all symbols in the grammar.
– Compute the Follow set for all non-terminals in the grammar.
– Build an LL(1) parser for the grammar.
– Parse the string id + id[id + id, id[]]. Show the stack, the input, and the action taken. (hint : http:
//csis.pace.edu/~bergin/slides/LLParse.pdf)

– Build the parse tree while you are parsing. Show your parse tree.

Exercise 3 Consider the following grammar for postfix expressions :

E → EE+

E → EE∗
E → num
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a. Eliminate left-recursion in the grammar.
b. Do left-factorisation of the grammar produced in question a.
c. Calculate Nullable (the nonterminals that can generate the empty string ε), FIRST for every produc-
tion and FOLLOW for every nonterminal in the grammar produced in question b.

d. Make a LL(1) parse-table for the grammar produced in question b.

Exercise 4 Consider the following grammar :

S → uBDz

B → Bv|w

D → EF

E → y|ε

F → x|ε

Calculate Nullable, FIRST and FOLLOW sets.
Construct the LL(1) parse-table and give evidence that this grammar is not LL(1).
Give an LL(1) grammar that accepts the same language and built the LL(1) parse table for it.

1.3 Buttom Up Analysis : LR(0)

Exercise 5

Given the grammar
S ← AB$

A← aA

A← x

B ← bB

B ← c

– Construct the automaton that can represent this grammar (also called Characteristic Finite State
Machine for the grammar). Is it LR(0) ? Why or why not ?

– Construct action and goto tables from the automaton.
– Show the actions of a parser (using the action and goto tables) when parsing the string "aaxbc$".

Exercise 6

Given the grammar
Z ← E$

E ← T |E + T

T ← i|(E)

– Prove that this grammar is not LR(0)
– Is this grammar SRL(1) ? If so, give the automaton and the action/goto table.
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