
M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
with MPI and OpenMP

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this course, you will be able to
Explain the main architectures in HPC today
Discuss domain decomposition techniques
Write parallel applications using the Message Passing
Interface
Use any of the three communication paradigms of MPI
Use the interface for parallel I/O provided by MPI
Parallelize applications using OpenMP constructs
Use MPI and OpenMP parallelization in the same
application

Course GSTU2009 Slide 2

Acknowledgments

This course is influenced by courses and input of a number of
people over the years. I wish to thank some of them explicitly
for their input.

Rolf Rabenseifner for his comprehensive course on MPI
and OpenMP
Bernd Mohr for his input on parallel architectures and
OpenMP
Boris Orth for his work on our concerted MPI courses of
the past

Course GSTU2009 Slide 3

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Parallel architectures and programming
models

Course GSTU2009 Marc-André Hermanns

Learning objectives

After this lesson, you will be able to
List the most common computing architectures in HPC
List the most common interconnect topologies in HPC
Select a programming model for a given computing
architecture
Discuss the advantages and disadvantages of the MPI,
OpenMP and PGAS programming model
Evaluate how a parallelization scheme is influenced by the
computing platform

Course GSTU2009 Parallel architectures and programming models Slide 8

Supercomputing drives computational science

Three pillars of scientific research
Theoretical science
Experimental science
Computational science

Computational science is used wherever phenomena are
too complex to be reliably predicted by theory
too expensive or too dangerous to be investigated by
experiments

High-performance computing (HPC) has become an
indispensable tool for the solution of many fundamental
problems in science and engineering

Course GSTU2009 Parallel architectures and programming models Slide 9

Why go parallel?

Physical limits of sequential architectures are mostly
reached
The clock cycle time cannot be made arbitrarily small

High clock frequencies need a small physical size of the
system due to the finite speed of light
High clock frequencies and high integration density lead to a
high heat density, which must be dissipated out of the system

The memory-to-CPU bandwidth is limited even stronger
Increasing gap between processor clock cycle and memory
access times
Processors deliver a continuously decreasing fraction of their
peak performance

Your application requires huge amounts of memory
You need to cut down total time to solution
You want to solve a more complex problem

Course GSTU2009 Parallel architectures and programming models Slide 10

Parallel architecture concepts

Parallel processing concepts:
Pipelines, vector registers and instructions
→ vector computing
Functional parallelism
→ superscalar processors, very long instruction word (VLIW)
Multithreading
Simultaneous Multithreading (SMT), Hyperthreading
Shared-memory and distributed-memory parallel computers
Hybrid systems

Memory access concepts:
Cache-based
Vector access via several memory banks
Pre-loading, pre-fetching

Course GSTU2009 Parallel architectures and programming models Slide 11

Shared and distributed memory systems

Shared-memory systems
Single address space shared by multiple processors
SMP = symmetric multi-processing

Distributed-memory systems
Separate nodes have separate address spaces
Cluster
MPP = massively parallel processing systems

Hybrid systems
Combining both concepts
Cluster - Network of Workstations

#nodes > #processors/node
Constellation

#processors/node ≥ #nodes

Course GSTU2009 Parallel architectures and programming models Slide 12

Shared-memory systems

All cores have access to all memory
banks (shared address space)
Symmetric multi-processing (SMP)
Concepts:

Uniform memory access (UMA)
Distributed shared memory (DSM)
Cache-coherent NUMA (ccNUMA)

Programming Models:
Implicit communication via shared data
Explicit synchronization
Pthreads, OpenMP, PGAS, [MPI]

Core Core Core

M M M

Interconnect

Course GSTU2009 Parallel architectures and programming models Slide 13

Distributed-memory systems

All nodes/PEs
own local memory
interconnected by a communication
network

Concepts:
Non-uniform memory access (NUMA)
Remote direct memory access
(RDMA)
No remote memory access (NORMA)

Programming Models:
Explicit data distribution,
communication, synchronization
MPI, PGAS, PVM

Core Core Core

M M M

Interconnect

Course GSTU2009 Parallel architectures and programming models Slide 14

Hybrid systems I

Core Core Core

M M M

Interconnect

Core Core Core

M M M

Interconnect

Network or Switch

Course GSTU2009 Parallel architectures and programming models Slide 15

Hybrid systems II
Due to the multi-core development almost all modern HPC
systems are clusters of SMPs

Non-Uniform Memory Access (NUMA)
Shared-memory inside each node
Distributed-memory between nodes

Programming models
Message-passing between all cores
Message-passing between nodes, multi-threading inside
nodes
Partitioned global address space (PGAS) between all cores

Course GSTU2009 Parallel architectures and programming models Slide 16

Interconnection topologies I
Complete communication graph

Each node is directly connected to
every other node
Dedicated link between each pair of
nodes
Grows expensive with a large number
of nodes

Course GSTU2009 Parallel architectures and programming models Slide 17

Interconnection topologies II
Bus communication

Nodes communicate over a common
bus, either directly or via a shared
memory attached to the bus
Concurrent communication may
interfere
Grows inefficient with a large number
of nodes

Course GSTU2009 Parallel architectures and programming models Slide 18

Interconnection topologies III
Regular n-dimensional grids

Direct link to neighbors
Grid

Each node has 0,1, or 2 neighbors per
dimension

Torus
Each node has exactly 2 neighbors per
dimension

Efficient nearest neighbor
communication
Suitable for a large number of nodes

Course GSTU2009 Parallel architectures and programming models Slide 19

Interconnection topologies IV
Trees

Nodes on leaves of the tree
Special form: fat tree
Cost effective
Suitable for large number of nodes

Course GSTU2009 Parallel architectures and programming models Slide 20

Parallelization

Two major computation resources:
Processor
Memory

Parallelization means
Distributing work among processors
Synchronization of the distributed work

If memory is distributed it also means
Distributing data
Communicating data between local and remote processors

Course GSTU2009 Parallel architectures and programming models Slide 21

Basic parallel programming paradigm: SPMD

SPMD = Single Program, Multiple Data
Programmer writes one program which is executed on all
processors (contrary e.g. to a client-server model)
Basic paradigm for implementation of parallel programs
MPMD (= Multiple Programs, Multiple Data) can be
emulated with SPMD, e.g.

if (my_id == 42) then
do_something()

else
do_something_else()

endif

Course GSTU2009 Parallel architectures and programming models Slide 22

Parallel programming model

Abstract model for the programming of (classes of) parallel
computer systems
Offers combined methods for

Distribution of work & data
Communication and synchronization

Independent of a specific programming language

Course GSTU2009 Parallel architectures and programming models Slide 23

Parallel programming models

Message Passing Interface (MPI)
Distributed-memory parallelization
User specifies how data and work are distributed
User specifies how and when data is communicated
By explicit calls to MPI library functions

OpenMP
Shared-memory parallelization
Automatic or directed work distribution
(e.g. loop parallelization)
No explicit data distribution and communication
Synchronization is implicit (can also be user-defined)

Partitioned Global Address Space (PGAS)
Data-parallel programming (single address space)
Distribution of data and work is done by the compiler
Possibly array statements expressing data-parallel operations
e.g., HPF, CAF, UPC, X10, Chapel, Fortress, Titanium

Course GSTU2009 Parallel architectures and programming models Slide 24

Summary

The main concepts are shared-memory and
distributed-memory with some high-speed network
There is a large variety of possible network topologies

Fat-tree, multi-dimensional torus, hyper-cube, . . .
Low-end platforms usually have less network complexity
High-end platforms often have more complex network
topologies.

Architectures and topologies underlie constant evolution
Application development and optimization needs to be
balanced between portability and efficiency

Course GSTU2009 Parallel architectures and programming models Slide 25

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Workload distribution and domain
decomposition

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this lesson, you will be able to
Classify different decomposition techniques
Evaluate the cost of different decomposition schemes
Evaluate parallelization parameters

data locality, dimensionality of data decomposition,
data placement, etc.

Create an (≤ n)-dimensional block decomposition for
n-dimensional problems

Course GSTU2009 Workload distribution and domain decomposition Slide 27

Dependencies in parallelization

Time-like variables cannot be parallelized
Dependency between step N and N + 1
e.g. Signal processing, non-commutative operations . . .

Space-like variables can be parallelized
Complete information used in a partial step is available
e.g. Objects, . . .

Some variables have both characters
Work with time-like character needs to be serialized

Course GSTU2009 Workload distribution and domain decomposition Slide 28

Load balancing

Parallelized parts of a program only perform well, if load
between processes is balanced
Load balancing has more than one variable

Time to process data
Time to communicate data
Time to calculate load balance
Local information on load distribution

Different factors determine the what and how in balancing
the load
Different types of data may need to be handled differently

Course GSTU2009 Workload distribution and domain decomposition Slide 29

Work distribution

Domain decomposition
Workload is evenly distributed over processes
Common case for homogeneous platforms

Functional decomposition
Different functional parts are distributed to different groups of
processes
Can be advantageous and/or necessary on heterogeneous
platforms

Course GSTU2009 Workload distribution and domain decomposition Slide 30

Considerations on work distribution

Partitioning costs
Calculation of partitions
Possible exchange of halo data

Data-locality in partitions
Stability of partitions

Static partitioning
Dynamic partitioning

Shape of data and decomposition
Geometric decompositions
Graph decompositions

Dimensionality of the problem

Course GSTU2009 Workload distribution and domain decomposition Slide 31

Geometric decomposition

Utilize any information about the shape of the data to
optimize decomposition
When objects have an underlying geometrical shape, then
geometric decomposition techniques are useful

finite elements, particles in a 3D volume, cells on a 2D
game-plan, . . .

Example: quad-tree (2D) or oct-tree (3D) decompositions
Divide space into quadrants (2D)/octants (3D)
If a quadrant contains too much load, refine successively

Course GSTU2009 Workload distribution and domain decomposition Slide 32

Graph decompositions

If communication pattern is less regular, decomposition
needs to be more general

Objects as vertices of a graph
Communication and adjacency information as edges

Goal: Find optimal decomposition and mapping
No efficient algorithm known for exact solution
Heuristics to approximate work quite well
Good starting point: (Par)Metis

Course GSTU2009 Workload distribution and domain decomposition Slide 33

Dynamic decomposition and load balancing

Complexity of partition may not be known in advance
Complexity of partition may change over time

Adaptive mesh refinement (AMR)
Re-partitioning (run partitioner and re-distribute data)
Overdecomposition

Create much more partitions than processes
Schedule new partition to process as it completed a partition
Better load balance in case of different partition complexities
More communication and synchronization

Course GSTU2009 Workload distribution and domain decomposition Slide 34

Border exchange
Objects needed in several partitions

One process is owner of the object
Other processes keep a copy

ghost cell, halo cell, shadow cell, . . .

Usually local ghost cells are integrated in the local data
structures
Synchronization between processes needed between
updates of cells
Additional data exchange after computation phase

Course GSTU2009 Workload distribution and domain decomposition Slide 35

Partitioning example
n-dimensional block data decomposition

0
1
2
3
4
5
6
7

less neighbors (≤ 2)
fits any process count
larger halo exchanges

76

54

32

10

more neighbors (≤ 8)
process count restrictions
for balanced grid
smaller halo exchanges

Course GSTU2009 Workload distribution and domain decomposition Slide 36

Cost factors

halo width in each dimension
matrix width in each dimension
number of direct and indirect neighbors

cyclic boundaries equal number of neighbors for all partitions
direct neighbors have full halo exchange
indirect neighbors have corner halo exchange

number of partitions in each dimension

Course GSTU2009 Workload distribution and domain decomposition Slide 37

Summary

Parallelization is hard when too many dependencies exist
between partitions
Partitioning with distributed data induces communication
and synchronization time
Domain decomposition depends on shape and behavior of
simulated data
Work distribution costs depend on

Platform independent factors
halo size, message size, . . .

Platform dependent factors
process placement, memory requirements, . . .

Course GSTU2009 Workload distribution and domain decomposition Slide 38

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Introduction to MPI

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this lesson, you will be able to
explain the message-passing paradigm
relate message-passing functionality to every-day
communication
create a minimal message-passing program with MPI
query the most important communicator information
define the blocking and non-blocking semantic in MPI
list different communication paradigms and other
functionality offered by MPI

Course GSTU2009 Introduction to MPI Slide 40

What is MPI?

Message-Passing Interface
Industry standard for message passing systems

Manufacturers of parallel computers and researchers from
universities, laboratories and industry are involved in its
development
http://www.mpi-forum.org

Implementation of the standard is a library of subroutines
Can be used with Fortran, C, and C++ programs
Contains more than 300 functions, but:
Only 6 are sufficient to write complete message-passing
programs!
Open source implementations available

MPI is widely used
MPI-parallelized programs are portable

Course GSTU2009 Introduction to MPI Slide 41

http://www.mpi-forum.org

MPI history I

Version 1.0 (1994)
Fortran77 and C language bindings
129 functions

Version 1.1 (1995)
Corrections and clarifications, minor changes
No additional functions

Version 1.2 (1997)
Further corrections and clarifications for MPI-1
1 additional function

Version 2.0 (1997)
MPI-2 with new functionalities
193 additional functions

Course GSTU2009 Introduction to MPI Slide 42

MPI history II

Version 2.1 (2008)
Corrections and clarifications
Unification of MPI 1.2 and 2.0 into a single document

Version 2.2 (scheduled for 2009)
Further corrections and clarifications
New functionality with minor impact on implementations

Version 3.0 (in discussion)
New functionality with major impact on implementations

Course GSTU2009 Introduction to MPI Slide 43

Message-passing programming paradigm

Each processor has its own private address space
Can physically be distributed or shared

The variables of each sub-program have
the same name
but possibly different locations and different data contents

Data exchange is explicit by passing a message

Course GSTU2009 Introduction to MPI Slide 44

Messages

Messages are packets of data exchanged between
processes
Necessary information for the message-passing system:

Sending process
Source location
Source data type
Source data size

Receiving process i.e., the ranks
Destination location
Destination data type
Destination data size

Course GSTU2009 Introduction to MPI Slide 45

Messages in MPI

A message is an array of elements of a particular MPI
datatype,

described by a 3-tuple consisting of
Position in memory (buffer address)
Number of elements
MPI datatype

MPI datatypes
Basic datatypes
Derived datatypes

Derived datatypes can be built from basic or derived
datatypes
Basic MPI datatypes are different for C and Fortran

Course GSTU2009 Introduction to MPI Slide 46

The message-passing infrastructure

Every sub-program needs to be connected to a
message-passing infrastructure
Access to a message-passing infrastructure is comparable
to a

Mailbox
Phone
Fax

MPI

Program must be linked against an MPI library

Program must be started with the MPI start-up mechanism

MPI must be initialized and finalized in the program

Course GSTU2009 Introduction to MPI Slide 47

Header files
C/C++

#include <mpi.h>

Contain definition of
constants
functions
subroutines

Course GSTU2009 Introduction to MPI Slide 48

Header files
Fortran

include ‘mpif.h’

or

use mpi ! Fortran 90

Contain definition of
constants
functions
subroutines

Course GSTU2009 Introduction to MPI Slide 48

Generic MPI function format
C/C++

error = MPI Function(parameter,...);

Error code is integer return value

MPI namespace

The MPI and PMPI prefix is reserved for MPI constants and
routines, i.e. application variables and functions must not
begin with MPI or PMPI

Course GSTU2009 Introduction to MPI Slide 49

Generic MPI function format
Fortran

call MPI FUNCTION(parameter,...,ierror)

Error code is additional integer parameter

MPI namespace

The MPI and PMPI prefix is reserved for MPI constants and
routines, i.e. application variables and functions must not
begin with MPI or PMPI

Course GSTU2009 Introduction to MPI Slide 49

MPI initialization and finalization
C/C++

int MPI_Init(int* argc, char*** argv);

Must be called as the first MPI function
Only exception: MPI Initialized

int MPI_Finalize();

Must be called as the last MPI function
Only exception: MPI Finalized

Course GSTU2009 Introduction to MPI Slide 50

MPI initialization and finalization
Fortran

MPI_INIT(ierr)

INTEGER ierr

Must be called as the first MPI function
Only exception: MPI Initialized

MPI_FINALIZE(ierr)

INTEGER ierr

Must be called as the last MPI function
Only exception: MPI Finalized

Course GSTU2009 Introduction to MPI Slide 50

Addressing

Messages need addresses that they are sent to
Addresses are similar to

Mail addresses
Phone numbers
Fax numbers

MPI

Communication within a group of processes is handled via a
communicator

Each process possesses a unique ID (rank) within each
communicator

The ranks of the MPI processes are used as addresses

Course GSTU2009 Introduction to MPI Slide 51

Communicator basics

Two predefined communicators
MPI COMM WORLD – contains all MPI processes
MPI COMM SELF – contains only the local process

Communicators are defined by a process group and a
specific context

Different communicators can have the same process group
New communicators are created

by derivation from existing ones
from a process group by a collective operation

Collective operations on a communicator
have to be called by all processes of the communicator
need to be called in the same order on every participating
process

Course GSTU2009 Introduction to MPI Slide 52

Handles

MPI maintains internal data structures
These are referenced by the user through handles

Example: MPI COMM WORLD

Some MPI routines return handles to the user
These can be used in subsequent MPI calls
Handles are of a specific language dependent datatype

C special MPI typedefs
Fortran INTEGER

Course GSTU2009 Introduction to MPI Slide 53

Accessing communicator information: rank
C/C++

The rank identifies each process within a communicator

int MPI Comm rank(MPI Comm comm, int *rank)

int myrank;
...
MPI Init(&argc, &argv);
...
MPI Comm rank(MPI COMM WORLD, &myrank);
...

Course GSTU2009 Introduction to MPI Slide 54

Accessing communicator information: rank
Fortran

The rank identifies each process within a communicator

MPI COMM RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

INTEGER :: myrank, ierr
...
call MPI INIT(ierr)
...
call MPI COMM RANK(MPI COMM WORLD, myrank, ierr)
...

Course GSTU2009 Introduction to MPI Slide 54

Accessing communicator information: size
C/C++

The number of processes in a communicator is its size

int MPI Comm size(MPI Comm comm, int *size)

int size;
...
MPI Init(&argc, &argv);
...
MPI Comm size(MPI COMM WORLD, &size);
...

Course GSTU2009 Introduction to MPI Slide 55

Accessing communicator information: size
Fortran

The number of processes in a communicator is its size

MPI COMM SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

INTEGER :: size, ierr
...
call MPI INIT(ierr)
...
call MPI COMM SIZE(MPI COMM WOLD, size, ierr)
...

Course GSTU2009 Introduction to MPI Slide 55

Basic datatypes in MPI: C
MPI datatype C datatype
MPI CHAR signed char

MPI SHORT signed short int

MPI INT signed int

MPI LONG signed long int

MPI UNSIGNED CHAR unsigned char

MPI UNSIGNED SHORT unsigned short int

MPI UNSIGNED unsigned int

MPI UNSIGNED LONG unsigned long int

MPI FLOAT float

MPI DOUBLE double

MPI LONG DOUBLE long double

MPI BYTE

MPI PACKED

Course GSTU2009 Introduction to MPI Slide 56

Basic datatypes in MPI: Fortran
MPI datatype Fortran datatype
MPI INTEGER INTEGER

MPI REAL REAL

MPI DOUBLE PRECISION DOUBLE PRECISION

MPI COMPLEX COMPLEX

MPI LOGICAL LOGICAL

MPI CHARACTER CHARACTER(1)

MPI BYTE

MPI PACKED

Course GSTU2009 Introduction to MPI Slide 57

MPI datatypes for non-standard C and Fortran
datatypes

An MPI implementation may also support non-standard
datatypes, if the host language supports these.

MPI datatype C datatype
MPI LONG LONG INT longlong int

(64 bit Integer)

MPI datatype Fortran datatype
MPI DOUBLE COMPLEX DOUBLE COMPLEX

MPI REAL<n> REAL*<n>

MPI INTEGER<n> INTEGER*<n>

MPI COMPLEX<n> COMPLEX*<n>

Course GSTU2009 Introduction to MPI Slide 58

Communication paradigms and parallel I/O

Point-to-point communication
1:1 communication, with explicit calls on two processes of a
communicator

Collective communication
n:m communication, with explicit calls on all processes of a
communicator.

One-sided communication
1:1 communication, with explicit call on one process of a
communicator

Parallel I/O
Communication with the I/O subsystem (disk)

Course GSTU2009 Introduction to MPI Slide 59

Blocking vs. non-blocking semantics

Blocking communication

The call to the MPI function will return to the calling function, when
the overall call has completed in a sense that the provided user
buffer is again free to use.

Non-blocking communication

The call to the MPI function will return as soon as possible to the
calling function. The user-provided communication buffer must not
be touched, before the communication has been completed by an
appropriate call at the calling process.

Course GSTU2009 Introduction to MPI Slide 60

Summary

MPI is a settled industry standard on one hand, and still
actively developed on the other
MPI can be used with shared and distributed memory
architectures
MPI has language bindings for C, C++, and Fortran
All communication in MPI is done with communicators
Addressing of processes in MPI is done with a so-called
rank that is unique for a process in a communicator
MPI has multiple communication paradigms available, as
well as an interface for structured parallel I/O

Course GSTU2009 Introduction to MPI Slide 61

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Blocking point-to-point communication

Course GSTU2009 Marc-André Hermanns

Learning objectives

After this lesson, you will be able to
write message passing programs with MPI
asses the up- and downsides of blocking point-to-point
communication
list different communication modes for MPI point-to-point
communication
evaluate use cases for different types of point-to-point
communication modes

Course GSTU2009 Blocking point-to-point communication Slide 63

Point-to-point communication

Communication between two processes
Note: A process can send messages to itself

A source process sends a message to a destination
process by a call to an MPI send routine
A destination process needs to post a receive by a call to
an MPI receive routine
The destination process is specified by its rank in the
communicator, e.g. MPI COMM WORLD

Every message sent with a point-to-point call, needs to be
matched by a receive.

Course GSTU2009 Blocking point-to-point communication Slide 64

Sending a message
C/C++

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

BUF is the address of the message to be sent, with COUNT
elements of type DATATYPE

DEST is the rank of the destination process within the
communicator COMM
TAG is a marker used to distinguish between
different messages

Course GSTU2009 Blocking point-to-point communication Slide 65

Sending a message
Fortran

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

BUF is the address of the message to be sent, with COUNT
elements of type DATATYPE

DEST is the rank of the destination process within the
communicator COMM
TAG is a marker used to distinguish between
different messages

Course GSTU2009 Blocking point-to-point communication Slide 65

Receiving a message
C/C++

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Status *status)

BUF, COUNT and DATATYPE refer to the receive buffer
SOURCE is the rank of the sending source process within the
communicator COMM (can be MPI ANY SOURCE)
TAG is a marker used to prescribe that only a message with
the specified tag should be received (can be MPI ANY TAG)
STATUS (output) contains information about the received
message

Course GSTU2009 Blocking point-to-point communication Slide 66

Receiving a message
Fortran

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS,

IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

BUF, COUNT and DATATYPE refer to the receive buffer
SOURCE is the rank of the sending source process within the
communicator COMM (can be MPI ANY SOURCE)
TAG is a marker used to prescribe that only a message with
the specified tag should be received (can be MPI ANY TAG)
STATUS (output) contains information about the received
message

Course GSTU2009 Blocking point-to-point communication Slide 66

Probing a message
C/C++

int MPI_Probe(int source, int tag, MPI_Comm comm,

MPI_Status *status)

On unknown message size with no guaranteed upper
bound
Query of communication envelope
SOURCE is the rank of the sending source process within the
communicator COMM (can be MPI ANY SOURCE)
TAG is a marker used to prescribe that only a message with
the specified tag should be received (can be MPI ANY TAG)
STATUS (output) contains information about the received
message

Course GSTU2009 Blocking point-to-point communication Slide 67

Probing a message
Fortran

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),

IERROR

On unknown message size with no guaranteed upper
bound
Query of communication envelope
SOURCE is the rank of the sending source process within the
communicator COMM (can be MPI ANY SOURCE)
TAG is a marker used to prescribe that only a message with
the specified tag should be received (can be MPI ANY TAG)
STATUS (output) contains information about the received
message

Course GSTU2009 Blocking point-to-point communication Slide 67

Communication envelope
C/C++

All communication parameters, but the actual message
payload is accounted to the message envelope

source rank, tag, message size, . . .

Envelope information is returned in STATUS variable

status.MPI_SOURCE
status.MPI_TAG
status.MPI_ERROR

Course GSTU2009 Blocking point-to-point communication Slide 68

Communication envelope
Fortran

All communication parameters, but the actual message
payload is accounted to the message envelope

source rank, tag, message size, . . .

Envelope information is returned in STATUS variable

status(MPI_SOURCE)
status(MPI_TAG)
status(MPI_ERROR)

Course GSTU2009 Blocking point-to-point communication Slide 68

Information on received message size
C/C++

Message received doesn’t need to fill the receive buffer
Number of elements actually received can be found by
querying the communication envelope (STATUS)

int MPI_Get_count(MPI_Status *status,

MPI_Datatype datatype, int *count)

Course GSTU2009 Blocking point-to-point communication Slide 69

Information on received message size
Fortran

Message received doesn’t need to fill the receive buffer
Number of elements actually received can be found by
querying the communication envelope (STATUS)

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT,

IERROR

Course GSTU2009 Blocking point-to-point communication Slide 69

Communication modes

Send modes

Synchronous send ⇒ MPI Ssend

Buffered send ⇒ MPI Bsend

Standard send ⇒ MPI Send

Ready send ⇒ MPI Rsend

Receive all modes

Receive ⇒ MPI Recv

Probe ⇒ MPI Probe

Course GSTU2009 Blocking point-to-point communication Slide 70

Completion conditions
Communication
mode

Completion condition Remark

Synchronous
send MPI SSEND

Only completes when
the receive has started

Buffered send
MPI BSEND

Always completes
(unless an error occurs)
irrespective of whether a
receive has been posted

Needs a user-defined
buffer to be attached
with
MPI BUFFER ATTACH

Standard Send
MPI SEND

Either synchronous or
buffered

Uses an internal buffer

Ready Send
MPI RSEND

Always completes
(unless an error occurs)
irrespective of whether a
receive has been posted

May be started only if
the matching receive
is already posted - not
recommended

Receive
MPI RECV

Completes when a
message has arrived

Same routine for all
communication modes

Course GSTU2009 Blocking point-to-point communication Slide 71

Point-to-point communication requirements

Communicator must be the same
Sender must specify a valid destination rank
Receiver must specify a valid source rank

MPI ANY SOURCE also valid
Tags must match

MPI ANY TAG also valid

Message datatypes must match
Receive buffer must be large enough to hold the message

If it is not, behavior is undefined
Can be larger than the data received

Course GSTU2009 Blocking point-to-point communication Slide 72

Wildcards

Receiver can use wildcards for SOURCE and TAG

To receive a message from any source use MPI ANY SOURCE

To receive a message with any tag use MPI ANY TAG

Actual source and tag are returned in the STATUS parameter

Course GSTU2009 Blocking point-to-point communication Slide 73

Rules I

Standard send (MPI SEND)

Minimal transfer time
May be implemented as buffered or synchronous send,
possibly depending on the message size - do not assume
either case

Synchronous send (MPI SSEND)

High latency, best bandwidth
Risk of idle times, serialization, deadlocks

Course GSTU2009 Blocking point-to-point communication Slide 74

Rules II

Buffered send (MPI BSEND)

Low latency, low bandwidth

Ready send (MPI RSEND)

Use only if the logical flow of your parallel program permits
it, i.e. if it is guaranteed that the receiving process is ready
for the message

Course GSTU2009 Blocking point-to-point communication Slide 75

Point-to-point communication semantics
General properties of point-to-point communication

Message order preservation
Messages sent from the same sender which match the same
receive are received in the order they were sent
Messages do not overtake each other

communicator

4

3

0

1

2

6

7

5

destination

source

messages

Progress
It is not possible for a matching send and receive
pair to remain permanently outstanding

Course GSTU2009 Blocking point-to-point communication Slide 76

Point-to-point communication semantics II
General properties of point-to-point communication

Fairness
Not guaranteed!
It is the programmers responsibility to prevent starvation of
send or receive operations

Resource limitations
Any pending communication operation consumes system
resources (e.g. buffer space) that are limited
Errors may occur when a lack of resources prevents the
execution of an MPI call

Course GSTU2009 Blocking point-to-point communication Slide 77

Pitfalls

Deadlocks with standard sends
Overall application semantic causes deadlock when
implementation chooses synchronous mode
Do not have all processes send or receive at the same time
with blocking calls
Use special communication patterns

checked, odd-even, . . .

Performance penalties
Late Receiver – in synchronous mode, the sender waits for
the receiver to post the receive call
Late Sender – receiving process blocks in call until the
sender starts to send the message

Course GSTU2009 Blocking point-to-point communication Slide 78

Summary

Point-to-point communication has several modes with
different semantics
A blocking call will return, when the user-provided buffer
can be reused
Non-determinism in message flow can be expressed with
wildcards for source process and message tag on receiver
side
Message with same envelope will not overtake each other

Messages with different tags may overtake each other when
received/probed explicitly (not recommended)

Blocking point-to-point communication is straight-forward
to implement and usually has a very low internal overhead
Precautions have to be taken not to induce deadlocks or
performance breakdowns into the communication

Course GSTU2009 Blocking point-to-point communication Slide 79

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Non-blocking point-to-point
communication

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this lesson, you will be able to
differentiate between asynchronous and non-blocking
communication
use the non-blocking point-to-point communication
interface to overlap communication with computation
decide when to use the blocking or non-blocking
communication calls
circumnavigate typical pitfalls with non-blocking
communication

Course GSTU2009 Non-blocking point-to-point communication Slide 81

Non-blocking communication

Non-blocking communication uses three phases:
1 Initiate communication

’I’ for ’immediate’ (or ’initiate’, or ’incomplete’, or . . .)
Non-blocking routines return before the communication has
completed
Non-blocking routines have the same arguments as their
blocking counterparts except for an extra request argument

2 User-application can attend other work
Computation, communication, . . .
Goal: overlapping communication and computation

3 Complete communication
waiting for the communication request to finish

Course GSTU2009 Non-blocking point-to-point communication Slide 82

Request handles

Used for non-blocking communication
Request handles must be stored in local variables

C MPI Request
Fortran INTEGER

A non-blocking communication routine returns a value for
the request handle
This value is used by MPI WAIT or MPI TEST to test when the
communication has completed
If the communication has completed the request handle is
set to MPI REQUEST NULL

Course GSTU2009 Non-blocking point-to-point communication Slide 83

Communication modes

Send modes

Synchronous send ⇒ MPI Issend

Buffered send ⇒ MPI Ibsend

Standard send ⇒ MPI Isend

Ready send ⇒ MPI Irsend

Receive all modes

Receive ⇒ MPI Irecv

Probe ⇒ MPI Iprobe

Course GSTU2009 Non-blocking point-to-point communication Slide 84

Non-blocking synchronous send
C/C++

int MPI_Issend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request)

Non-blocking send routines have the same arguments as
their blocking counterparts except for the extra REQUEST

argument
Send buffer BUF must not be accessed before the send has
been successfully tested for completion with
MPI WAIT or MPI TEST

Course GSTU2009 Non-blocking point-to-point communication Slide 85

Non-blocking synchronous send
Fortran

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,

IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST,

IERROR

Non-blocking send routines have the same arguments as
their blocking counterparts except for the extra REQUEST

argument
Send buffer BUF must not be accessed before the send has
been successfully tested for completion with
MPI WAIT or MPI TEST

Course GSTU2009 Non-blocking point-to-point communication Slide 85

Non-blocking receive
C/C++

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request *request)

Non-blocking receive routine has the same arguments as
its blocking counterpart, except the last parameter is not a
STATUS but a REQUEST argument
Receive buffer BUF must not be accessed before the
receive has been successfully tested for completion with
MPI WAIT or MPI TEST

Course GSTU2009 Non-blocking point-to-point communication Slide 86

Non-blocking receive
Fortran

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM,

REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST,

IERROR

Non-blocking receive routine has the same arguments as
its blocking counterpart, except the last parameter is not a
STATUS but a REQUEST argument
Receive buffer BUF must not be accessed before the
receive has been successfully tested for completion with
MPI WAIT or MPI TEST

Course GSTU2009 Non-blocking point-to-point communication Slide 86

Blocking vs non-blocking operations

A blocking send can be used with a non-blocking receive,
and vice versa
Non-blocking sends can use any mode, just like the
blocking counterparts
Synchronous mode refers to the completion of the send
(tested with MPI WAIT/MPI TEST), not to the initiation
(MPI ISSEND returns immediately!)
A non-blocking operation immediately followed by a
matching MPI WAIT is equivalent to the blocking operation
Fortran problems (see MPI, Chapter 16.2.2, pp. 461)

Course GSTU2009 Non-blocking point-to-point communication Slide 87

Communication completion

The user has two variants for checking communication
completion

Blocking
The call returns when communication is completed
The MPI Wait* family of calls

Non-blocking
The call returns immediately with a flag indicating completion
The MPI Test* family of calls
If the flag is indicating a completed request, the
communication needs no further completion

Both calls return when MPI REQUEST NULL is tested for
completion

Course GSTU2009 Non-blocking point-to-point communication Slide 88

Waiting for completion

Used where synchronization required
MPI Wait – wait for a single request
MPI Waitany – wait for a single request out of multiple
requests given
MPI Waitsome – wait for one or more requests out of
multiple requests given
MPI Waitall – wait for all given requests to complete

Course GSTU2009 Non-blocking point-to-point communication Slide 89

Testing for completion

Used where synchronization required
MPI Test – testing for a single request
MPI Testany – testing for a single request out of multiple
requests given
MPI Testsome – testing for one or more requests out of
multiple requests given
MPI Testall – testing for all given requests to be
completed

Course GSTU2009 Non-blocking point-to-point communication Slide 90

Overlapping communication and computation

The implementation may choose not to overlap
communication and computation
Progress may only be done inside of MPI calls

⇒ Not all platforms perform significantly better than well
placed blocking communication

More internal overhead for communication handling

If hardware support is present, application performance
may significantly improve due to overlap
Initiation of communication should be placed as early as
possible
Synchronization/completion should be placed as late as
possible

Course GSTU2009 Non-blocking point-to-point communication Slide 91

Summary

Non-blocking refers to the initiation of the communication
Calls need to be completed by a separate call
Progress is only guaranteed within MPI calls
User can test or wait for completion
Buffers may only be accessed after successful completion
Handles refer to pending communication requests
Single and multiple requests can be tested or waited for

Course GSTU2009 Non-blocking point-to-point communication Slide 92

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Derived Datatypes

Course GSTU2009 Marc-André Hermanns

Learning Objectives

At the end of this lesson, you will be able to
Define what MPI datatypes are
Derive MPI datatypes for arbitrary memory layouts
Use MPI derived datatypes in MPI communication calls
Evaluate where MPI datatypes can be helpful
Differentiate between size and extent of a datatype
Resize datatypes by manipulating lower and upper bound
markers

Course GSTU2009 Derived Datatypes Slide 94

Motivation

With MPI communication calls only multiple consecutive
elements of the same type can be sent
Buffers may be non-contiguous in memory

Sending only the real/imaginary part of a buffer of complex
doubles
Sending sub-blocks of matrices

Buffers may be of mixed type
User defined data structures

Course GSTU2009 Derived Datatypes Slide 95

Solutions without MPI derived datatypes

Non-contiguous data of a single type
Consecutive MPI calls to send and receive each element in
turn

Additional latency costs due to multiple calls
Copy data to a single buffer before sending it

Additional latency costs due to memory copy

Contiguous data of mixed types
Consecutive MPI calls to send and receive each element in
turn

Additional latency costs due to multiple calls
Use MPI BYTE and sizeof() to avoid the type-matching rules

Not portable to a heterogeneous system

Course GSTU2009 Derived Datatypes Slide 96

Derived datatypes

General MPI datatypes describe a buffer layout in memory
by specifying

A sequence of basic datatypes
A sequence of integer (byte) displacements

Derived datatypes are derived from basic datatypes using
constructors
MPI datatypes are referenced by an opaque handle

MPI datatypes are opaque objects! Using the sizeof()
operator on an MPI datatype handle will return the size
of the handle, neither the size nor the extent of an MPI
datatype.

Course GSTU2009 Derived Datatypes Slide 97

Example: Data layout and datatype handle

struct buff_layout {

int i[3];

double d[5];

} buffer;

Compiler

int double

types [0] = MPI_INT;

blocklengths [0] = 3;

displacements [0] = 0;

types [1] = MPI_DOUBLE;

blocklengths [1] = 5;

displacements [1] = ...;

MPI_Type_create_struct (2,

blocklengths , displacements ,

types , &buff_datatype);

MPI_Type_commit (& buff_datatype);

MPI Send(&buffer, 1, buff datatype, ...);

Course GSTU2009 Derived Datatypes Slide 98

Creating a derived datatype: Type map

Any derived datatype is defined by its type map
A list of basic datatypes
A list of displacements (positive, zero, or negative)
Any type matching is done by comparing type maps

basic datatype 0 disp. of datatype 0
basic datatype 1 disp. of datatype 1
.
basic datatype n disp. of datatype n

Course GSTU2009 Derived Datatypes Slide 99

Example of a type map

A datatype with padding and holes

c 11 12 1.25283d+9

0 4 8 12 16 20 24

Basic datatype Displacement
MPI CHAR 0
MPI INT 4
MPI INT 8
MPI DOUBLE 16

Course GSTU2009 Derived Datatypes Slide 100

Contiguous data
C/C++

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

MPI_Datatype *newtype)

Simplest derived datatype
Consists of a number of contiguous items of the same
datatype

oldtype

newtype

Course GSTU2009 Derived Datatypes Slide 101

Contiguous data
Fortran

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

Simplest derived datatype
Consists of a number of contiguous items of the same
datatype

oldtype

newtype

Course GSTU2009 Derived Datatypes Slide 101

Vector data
C/C++

int MPI_Type_vector(int count, int blocklength,

int stride, MPI_Datatype oldtype,

MPI_Datatype *newtype)

Consists of a number of elements of the same datatype
repeated with a certain stride

oldtype

newtype

blocklength = 3 elements

stride = 5 elements between block starts

count = 2 blocks

Holes, not to be transferred

Course GSTU2009 Derived Datatypes Slide 102

Vector data
Fortran

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE,

NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE,

NEWTYPE, IERROR

Consists of a number of elements of the same datatype
repeated with a certain stride

oldtype

newtype

blocklength = 3 elements

stride = 5 elements between block starts

count = 2 blocks

Holes, not to be transferred

Course GSTU2009 Derived Datatypes Slide 102

Struct data
C/C++

int MPI_Type_create_struct(int count,

int *array_of_blocklengths,

MPI_Aint *array_of_displacements,

MPI_Datatype *array_of_types,

MPI_Datatype *newtype)

Data structure with different types

MPI INT MPI DOUBLE

block 0 block 1

Hole, if double needs 8 byte alignment

array of displacements[0] array of displacements[1]

Course GSTU2009 Derived Datatypes Slide 103

Struct data
Fortran

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES,

NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*),

ARRAY_OF_TYPES(*), NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Data structure with different types

MPI INT MPI DOUBLE

block 0 block 1

Hole, if double needs 8 byte alignment

array of displacements[0] array of displacements[1]

Course GSTU2009 Derived Datatypes Slide 103

Sub-array data
C/C++

int MPI_Type_create_subarray(int ndims,

int array_of_sizes[], int array_of_subsizes[],

int array_of_starts, int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

N-dimensional sub-array
of an N-dimensional array
Fortran and C order
allowed
Fortran and C calls expect
indices starting from 0

C/C++

Fo
rt

ra
n

Course GSTU2009 Derived Datatypes Slide 104

Sub-array data
Fortran

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES,

ARRAY_OF_SUBSIZES, ARRAY_OF_STARTS, ORDER,

OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*),

ARRAY_OF_SUBSIZES(*), ARRAY_OF_STARTS(*), ORDER,

OLDTYPE, NEWTYPE, IERROR

N-dimensional sub-array
of an N-dimensional array
Fortran and C order
allowed
Fortran and C calls expect
indices starting from 0

C/C++

Fo
rt

ra
n

Course GSTU2009 Derived Datatypes Slide 104

Distributed array data
int MPI_Type_create_darray(int size, int rank, int ndims,

int array_of_gsizes[], int array_of_distribs[],

int array_of_dargs[], int array_of_psizes[],

int order, MPI_Datatype oldtype,

MPI_Datatype *newtype)

N-dimensional
distributed/strided
sub-array of an
N-dimensional array
Fortran and C order
allowed
Fortran and C calls expect
indices starting from 0

C/C++

Fo
rt

ra
n

Course GSTU2009 Derived Datatypes Slide 105

Distributed array data
MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS,

ARRAY_OF_GSIZES[], ARRAY_OF_DISTRIBS[],

ARRAY_OF_DARGS[], ARRAY_OF_PSIZES[],

ORDER, MPI_DATATYPE OLDTYPE,

MPI_DATATYPE *NEWTYPE)

N-dimensional
distributed/strided
sub-array of an
N-dimensional array
Fortran and C order
allowed
Fortran and C calls expect
indices starting from 0

C/C++

Fo
rt

ra
n

Course GSTU2009 Derived Datatypes Slide 105

Finding the address of a memory location
C/C++

int MPI_Get_address(void *location, MPI_Aint *address)

MPI_Aint addr_block_0, addr_block_i;

MPI_Get_address(&block_0, &addr_block_0);
MPI_Get_address(&block_i, &addr_block_i);

displacement_i = addr_block_i - addr_block_0;

Do not rely on C’s address operator &, as ANSI C does not
guarantee pointer values to be absolute addresses. Furthermore,
address space may be segmented. Always use MPI GET ADDRESS,
which also guarantees portability.

Course GSTU2009 Derived Datatypes Slide 106

Finding the address of a memory location
Fortran

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

INTEGER IERROR

MPI_Aint addr_block_0 = MPI_Aint addr_block_i = 0;

MPI_Get_address(&block_0, &addr_block_0);
MPI_Get_address(&block_i, &addr_block_i);

displacement_i = addr_block_i - addr_block_0;

Course GSTU2009 Derived Datatypes Slide 106

Fixed memory layout of struct datatypes
C/C++

int double

C, struct

struct buff {
int i[3];
double d[5];

}

Course GSTU2009 Derived Datatypes Slide 107

Fixed memory layout of struct datatypes
Fortran

int double

Fortran common block

INTEGER I(3)

DOUBLE PRECISION D(5)

COMMON /BCOMM/ I, D

Fortran derived types

TYPE buff_type

SEQUENCE

INTEGER, DIMENSION(3)::i

DOUBLE PRECISION, DIMENSION(5)::d

END TYPE buff_type

TYPE(buff_type)::buff_var

Course GSTU2009 Derived Datatypes Slide 107

Alternative: Arbitrary memory layout

Each array is allocated independently
Each buffer is a pair of a 3-int and a 5-double array
The size of the hole may be positive, zero or even negative
For every buffer one needs a dedicated datatype handle,
e.g.

inbuf datatype

int double

outbuf datatype

int double

Course GSTU2009 Derived Datatypes Slide 108

Committing and freeing derived datatypes
C/C++

int MPI_Type_commit(MPI_Datatype *datatype)

Before it can be used in a communication or I/O call, each
derived datatype has to be committed

int MPI_Type_free(MPI_Datatype *datatype)

Mark a datatype for deallocation
Datatype will be deallocated when all pending operations
are finished

Course GSTU2009 Derived Datatypes Slide 109

Committing and freeing derived datatypes
Fortran

MPI_TYPE_COMMIT(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

Before it can be used in a communication or I/O call, each
derived datatype has to be committed

MPI_TYPE_FREE(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

Mark a datatype for deallocation
Datatype will be deallocated when all pending operations
are finished

Course GSTU2009 Derived Datatypes Slide 109

Size vs. extent of a datatype I

Size

The size of a datatype is the net number of bytes to be
transferred (without “holes”).

Extent

The extent of a datatype is the span from the lower to the
upper bound (including inner “holes”). When creating new
types, holes at the end of the new type are not counted to
the extent.

Course GSTU2009 Derived Datatypes Slide 110

Size vs. extent of a datatype II
Basic datatypes

size = extent = number of bytes used by the compiler

Derived datatypes (example)

old type

new type

size = 6 × size of old type
extent = 7 × extent of old type

Course GSTU2009 Derived Datatypes Slide 111

Query size and extent of a datatype
C/C++

int MPI_Type_size(MPI_Datatype datatype, int *size)

Returns the total number of bytes of the entries in DATATYPE

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint* lb,

MPI_Aint* extent)

The extent is the number of bytes between the lower and
the upper bound markers

Course GSTU2009 Derived Datatypes Slide 112

Query size and extent of a datatype
Fortran

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, SIZE, IERROR

Returns the total number of bytes of the entries in DATATYPE

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

The extent is the number of bytes between the lower and
the upper bound markers

Course GSTU2009 Derived Datatypes Slide 112

Resizing datatypes
C/C++

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb,

MPI_Aint extent, MPI_Datatype* newtype)

Sets new lower and upper bound markers
Allows for correct stride in creation of new derived
datatypes

Holes at the end of datatypes do not initially count to the
extent
Successive datatypes (e.g. contiguous, vector) would not be
defined as intended

Course GSTU2009 Derived Datatypes Slide 113

Resizing datatypes
Fortran

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

Sets new lower and upper bound markers
Allows for correct stride in creation of new derived
datatypes

Holes at the end of datatypes do not initially count to the
extent
Successive datatypes (e.g. contiguous, vector) would not be
defined as intended

Course GSTU2009 Derived Datatypes Slide 113

Summary

MPI datatypes are defined by their type map
Derived datatypes are created by defining a type map with
existing datatypes
Complex patterns can be defined
Datatypes are local to a process
Datatypes can have holes
Size is the number of bytes of the entries of a datatype
Extent is defined by the number of bytes between lower
and upper bound

Course GSTU2009 Derived Datatypes Slide 114

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Collective communication

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this lesson, you will be able to
use collective communication for communication patterns
involving multiple processes
combine computation and communication using reduction
calls
associate different communication calls with
communication patterns

Course GSTU2009 Collective communication Slide 116

Collective communication
Communication involving a group of processes

Examples

Barrier synchronization

Broadcast, scatter, gather

Global reductions (sum, maximum, logical operations, . . .)

Course GSTU2009 Collective communication Slide 117

Characteristics of collective operations I

Collective operations are associated with a communicator
All processes within the communicator must participate in the
collective communication

Synchronization may or may not occur
Depends on algorithm and implementation used to
communicate data

Collective operations are blocking
Buffers can be accessed after call returns
Non-blocking API is currently under discussion in the MPI
Forum and targeted for MPI 3.0

Course GSTU2009 Collective communication Slide 118

Characteristics of collective operations II
No interference with point-to-point communication

Be careful when overlapping blocking point-to-point with
collective communication

No tags
Communications occur in the order they are issued by the
user

Receive buffers must have exactly the same size as the
corresponding send buffers

Course GSTU2009 Collective communication Slide 119

Barrier synchronization
C/C++

int MPI_Barrier(MPI_Comm comm)

Explicit synchronization between processes
Remember: Time spent in MPI BARRIER or any other kind of
synchronization is always non-productive
Use only where global synchronization (over a
communicator) is needed
Synchronization is implicitly done by communication routines

A process cannot leave the function call before all
participating processes have entered the function
Global synchronization always includes inter-process
communication
If you use it for the synchronization of external
communication (e.g. I/O), consider exchanging tokens

May be more efficient and scalableCourse GSTU2009 Collective communication Slide 120

Barrier synchronization
Fortran

MPI_BARRIER(MPI_COMM COMM, IERROR)

INTERGER COMM, IERROR

Explicit synchronization between processes
Remember: Time spent in MPI BARRIER or any other kind of
synchronization is always non-productive
Use only where global synchronization (over a
communicator) is needed
Synchronization is implicitly done by communication routines

A process cannot leave the function call before all
participating processes have entered the function
Global synchronization always includes inter-process
communication
If you use it for the synchronization of external
communication (e.g. I/O), consider exchanging tokens

May be more efficient and scalableCourse GSTU2009 Collective communication Slide 120

Broadcast
C/C++

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,

int root, MPI_Comm comm)

before
bcast

after
bcast

B

B B B B B

Course GSTU2009 Collective communication Slide 121

Broadcast
Fortran

MPI_BCAST(BUF, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

before
bcast

after
bcast

B

B B B B B

Course GSTU2009 Collective communication Slide 121

Scatter
C/C++

int MPI_Scatter(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

before
scatter

after
scatter A B C D E

A B C D E

A B C D E

Course GSTU2009 Collective communication Slide 122

Scatter
Fortran

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

before
scatter

after
scatter A B C D E

A B C D E

A B C D E

Course GSTU2009 Collective communication Slide 122

Gather
C/C++

int MPI_Gather(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

int root, MPI_Comm comm)

before
gather

after
gather

A

A

B

B

C

C

D

D

E

E

A B C D E

Course GSTU2009 Collective communication Slide 123

Gather
Fortran

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

before
gather

after
gather

A

A

B

B

C

C

D

D

E

E

A B C D E

Course GSTU2009 Collective communication Slide 123

Gather-to-all
C/C++

int MPI_Allgather(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

before
allgather

after
allgather

A

A

B

B

C

C

D

D

E

E

A B C D E A B C D E A B C D E A B C D E A B C D E

Course GSTU2009 Collective communication Slide 124

Gather-to-all
Fortran

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE,

COMM, IERROR

before
allgather

after
allgather

A

A

B

B

C

C

D

D

E

E

A B C D E A B C D E A B C D E A B C D E A B C D E

Course GSTU2009 Collective communication Slide 124

All-to-all
C/C++

int MPI_All_to_all(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

before
all-to-all

after
all-to-all

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A F K P U B G L Q V C H M R W D I N S X E J O T Y

Course GSTU2009 Collective communication Slide 125

All-to-all
Fortran

MPI_ALL_TO_ALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

RECVCOUNT, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE,

COMM, IERROR

before
all-to-all

after
all-to-all

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A F K P U B G L Q V C H M R W D I N S X E J O T Y

Course GSTU2009 Collective communication Slide 125

Global reduction operators I
Perform a global reduction operation across all members of a group

Assosiative operation over distributed data
d0 ◦ d1 ◦ d2 ◦ . . . ◦ dn−1
di Data of process with rank i
◦ Associative operation

Examples
Global sum or product
Global maximum or minimum
Global user-defined operation

Order in which sub-reductions are performed is not
defined

Floating point rounding may depend on associativity
Behavior may be non-deterministic

Course GSTU2009 Collective communication Slide 126

Example: Global reduction
C/C++

root = 0;
MPI_Reduce(&inbuf, &resultbuf, 1, MPI_INT, MPI_SUM,

root, MPI_COMM_WORLD);

Global integer sum
Sum of all inbuf values is to be returned in resultbuf

The result is written to resultbuf of the root process only

Course GSTU2009 Collective communication Slide 127

Example: Global reduction
Fortran

root = 0
MPI_REDUCE(inbuf, resultbuf, 1, MPI_INTEGER, MPI_SUM,

root, MPI_COMM_WORLD, ierror)

Global integer sum
Sum of all inbuf values is to be returned in resultbuf

The result is written to resultbuf of the root process only

Course GSTU2009 Collective communication Slide 127

Predefined reduction operation handles
Operation handle Function
MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical AND
MPI BAND Bitwise AND
MPI LOR Logical OR
MPI BOR Bitwise OR
MPI LXOR Logical exclusive OR
MPI BXOR Bitwise exclusive OR
MPI MAXLOC Maximum and its location
MPI MINLOC Minimum and its location

Course GSTU2009 Collective communication Slide 128

Reduce
C/C++

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm)

before
reduce

after
reduce

A B C D E F G H I J K L M N O

A B C D E F G H I J K L M N O

?

◦ ◦ ◦ ◦

A◦D◦G◦J◦M

Course GSTU2009 Collective communication Slide 129

Reduce
Fortran

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

before
reduce

after
reduce

A B C D E F G H I J K L M N O

A B C D E F G H I J K L M N O

?

◦ ◦ ◦ ◦

A◦D◦G◦J◦M

Course GSTU2009 Collective communication Slide 129

User-defined reduction operators
C/C++

Operator handles
Predefined - see table on previous slide
User-defined

User-defined operation �
Associative
Must perform the operation ~A � ~B
syntax ⇒ MPI standard

int MPI_Op_create(MPI_User_function *func,

int commute, MPI_Op *op)

The COMMUTE flag tells MPI whether FUNC is commutative

Course GSTU2009 Collective communication Slide 130

User-defined reduction operators
Fortran

Operator handles
Predefined - see table on previous slide
User-defined

User-defined operation �
Associative
Must perform the operation ~A � ~B
syntax ⇒ MPI standard

MPI_OP_CREATE(FUNC, COMMUTE, OP, IERROR)

EXTERNAL FUNCTION

LOGICAL COMMUTE

INTEGER OP, IERROR

The COMMUTE flag tells MPI whether FUNC is commutative

Course GSTU2009 Collective communication Slide 130

Variants of reduction operators

MPI ALLREDUCE
No root
All processes receive the result

MPI REDUCE SCATTER
Similar to MPI ALLREDUCE, but:
Processes can choose to receive certain-size segments of
the result vector

MPI [EX]SCAN
”Parallel prefix” operation
Result in RECVBUF of process with rank i is the reduction of
the SENDBUF-values of ranks 0, . . . , i (inclusive)
Either including or excluding the local value

Course GSTU2009 Collective communication Slide 131

Summary

Collective communication provides interfaces to common
communication patterns involving multiple processes
It hides low-level communication algorithms behind
high-level interfaces
Different MPI implementations can optimize for a desired
architecture
Reduction functions provide the possibility of combining
communication with computation
Support for user-defined reduction operators
All collective communication functions available in MPI 2.x
are blocking

Course GSTU2009 Collective communication Slide 132

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
One-sided communication

Course GSTU2009 Marc-André Hermanns

Learning objectives

At the end of this lesson, you will be able to
use one-sided communication as the third communication
paradigm provided by MPI
differentiate between active and passive target
synchronization
use active and passive target synchronization calls to
enable fine-grained synchronization
understand where the one-sided communication paradigm
ease programming effort

Course GSTU2009 One-sided communication Slide 134

Motivation

Not all communication patterns can be efficiently solved
with the existing MPI communication paradigms
Collective and point-to-point communication partially need
tight synchronization of processes
Two-sided communication needs two explicit
communication calls:

Sender has explicit function call to send(. . .)
Receiver has explicit function call to recv(. . .)

Problem:
The receiver of the data cannot initiate the data transfer

Solution:
A data transfer from the callee to the caller

Course GSTU2009 One-sided communication Slide 135

Amenities of one-sided communication

Receiver can initiate data transfer
Ease of programming where communication partner does not
know it needs to participate in a data transfer in advance

Synchronization is detached from data transfer
Reduction operations available (only predefined)

Course GSTU2009 One-sided communication Slide 136

Terms and definitions I

Target

The process providing access to its memory through a
defined window. The target does not explicitly participate in
the data transfer.

Origin

The process triggering the one-sided operation, specifying all
needed parameters.

Course GSTU2009 One-sided communication Slide 137

Terms and definitions II

Window
A defined block of memory opened for remote access
through MPI RMA operations. Its definition is collective on all
processes using this window. Only designated targets have to
specify a valid buffer, origins can use a special placeholder to
obtain a handle without opening memory for remote access.

Exposure epoch

An exposure epoch is the time interval some defined data
access is allowed on a window.

Course GSTU2009 One-sided communication Slide 138

Terms and definitions III

Access epoch

An access epoch is the time interval from the origin process’
start signal of data access to its end signal of data access on
a window.

Course GSTU2009 One-sided communication Slide 139

Registering memory for MPI-RMA
C/C++

int MPI_Win_create(void* base, MPI_Aint* size, int disp_unit,

MPI_Info info, MPI_Comm comm, MPI_Win* win)

Needed to initialize a memory buffer for use with MPI RMA
Can be any part in memory

Memory allocated MPI ALLOC MEM may perform better
Memory allocated at natural boundaries may perform better

DISP UNIT sets offset handling for window
1 for no scaling (each byte is addressable)
sizeof(type) for array like indexing on non-byte arrays

Window is declared on all processes of a communicator
Base address, size, displacement unit, and info argument
may differ on the processes

Course GSTU2009 One-sided communication Slide 140

Registering memory for MPI-RMA
Fortran

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

Needed to initialize a memory buffer for use with MPI RMA
Can be any part in memory

Memory allocated MPI ALLOC MEM may perform better
Memory allocated at natural boundaries may perform better

DISP UNIT sets offset handling for window
1 for no scaling (each byte is addressable)
sizeof(type) for array like indexing on non-byte arrays

Window is declared on all processes of a communicator
Base address, size, displacement unit, and info argument
may differ on the processes

Course GSTU2009 One-sided communication Slide 140

De-registering memory for MPI-RMA
C/C++

int MPI_Win_free(MPI_Win* win)

Frees the handle (not the memory) and returns a null
handle
Can only be called after all RMA operations have been
handled

RMA operations must be completed by a proper
synchronization call

Memory can be freed by the user after the call returns

Course GSTU2009 One-sided communication Slide 141

De-registering memory for MPI-RMA
Fortran

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

Frees the handle (not the memory) and returns a null
handle
Can only be called after all RMA operations have been
handled

RMA operations must be completed by a proper
synchronization call

Memory can be freed by the user after the call returns

Course GSTU2009 One-sided communication Slide 141

RMA operations in MPI-2

target process

process memory

window

origin process

process memory

Get

Put/Accumulate

Course GSTU2009 One-sided communication Slide 142

Put operation
C/C++

int MPI_Put(void* origin_addr, int origin_count,

MPI_Datatype origin_type, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_type, MPI_Win win)

Data transfer from origin to target
No matching call on target side
Communication parameters all on one side

Origin must know the correct index to the window on target
process

Course GSTU2009 One-sided communication Slide 143

Put operation
Fortran

MPI_PUT(ORIGIN_ADDRE, ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_TYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,

TARGET_COUNT, TARGET_TYPE, WIN, IERROR

Data transfer from origin to target
No matching call on target side
Communication parameters all on one side

Origin must know the correct index to the window on target
process

Course GSTU2009 One-sided communication Slide 143

Accumulate operation
C/C++

int MPI_Accumulate(void* origin_addr, int origin_count,

MPI_Datatype origin_type, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_type, MPI_Op op, MPI_Win win)

Like PUT operation
Buffer elements on target side are combined with
operation OP

OP can only be a predefined reduction operator
Only with predefined datatypes
MPI Put is actually an accumulate with the MPI REPLACE
operator

Course GSTU2009 One-sided communication Slide 144

Accumulate operation
Fortran

MPI_ACCUMULATE(ORIGIN_ADDRE, ORIGIN_COUNT, ORIGIN_TYPE,

TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_TYPE,

OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,

TARGET_COUNT, TARGET_TYPE, OP, WIN, IERROR

Like PUT operation
Buffer elements on target side are combined with
operation OP

OP can only be a predefined reduction operator
Only with predefined datatypes
MPI Put is actually an accumulate with the MPI REPLACE
operator

Course GSTU2009 One-sided communication Slide 144

Get operation
C/C++

int MPI_Get(void* origin_addr, int origin_count,

MPI_Datatype origin_type, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_type, MPI_Win win)

Data transfer from target to origin
No matching call on target side
Communication parameters all on one side

Origin must know the correct index to the window on target
process

Course GSTU2009 One-sided communication Slide 145

Get operation
Fortran

MPI_GET(ORIGIN_ADDRE, ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_TYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_TYPE, TARGET_RANK,

TARGET_COUNT, TARGET_TYPE, WIN, IERROR

Data transfer from target to origin
No matching call on target side
Communication parameters all on one side

Origin must know the correct index to the window on target
process

Course GSTU2009 One-sided communication Slide 145

Synchronization schemes for MPI-2 RMA
operations

Active target synchronization

Origin and target participate equally in synchronizing the
RMA operations.

Collective synchronization with fence
General active target synchronization (GATS)

Passive target synchronization

Target process is not explicitly taking part in the
synchronization of the accessing RMA operation.

Synchronization with locks

Course GSTU2009 One-sided communication Slide 146

Synchronization with fence

Collective call on communicator used for window creation
Contains an implicit barrier
Data access has to occur between two fence calls
Written and read data is only accessible after completing
fence
Local and remote accesses must not occur between the
same fence calls
Access and exposure epoch matching is done
automatically

Course GSTU2009 One-sided communication Slide 147

Example: Synchronization with fence

time

pr
oc

es
se

s

A

B

C

Fence Fence

Fence Fence

Fence Fence

Put

Get

Course GSTU2009 One-sided communication Slide 148

General active target synchronization

Pairwise synchronization of processes on subgroups of
communicator used for window definition
Individual calls for access and exposure epochs

MPI Win start/MPI Win complete for access epoch
MPI Win post/MPI Win wait for exposure epoch

Accesses to local data only after epoch is closed
Data read from remote processes (access epoch) is
accessible after MPI Win complete
Data written by remote processes (exposure epoch) is
accessible after MPI Win wait

Mind the order of calls with process-local access and
exposure epochs

Exposure epoch must contain access epoch

Course GSTU2009 One-sided communication Slide 149

Example: General active target synchronization

time

pr
oc

es
se

s

A

B

C

Start Put Complete

Start Get Complete

Post Wait

Course GSTU2009 One-sided communication Slide 150

Passive target synchronization

Explicit synchronization and RMA operations only on the
origin process
Local and remote accesses need to be embraced by calls
to MPI Win lock and MPI Win unlock

Needed to ensure serial consistency of memory updates
Shared and exclusive locks available

MPI LOCK SHARED and MPI LOCK EXCLUSIVE

Order of accesses is not guaranteed and has to be
handled otherwise

Be aware of possible race-conditions in your code
Lock and any number of following RMA operations are
allowed to be non-blocking

Operations may be scheduled and executed within the
MPI Win Unlock

Course GSTU2009 One-sided communication Slide 151

Example: Synchronization with locks

time

pr
oc

es
se

s

A

B

C

Lock Put Unlock

Lock Get Unlock

Lock Unlock

Course GSTU2009 One-sided communication Slide 152

Assertions on MPI one-sided calls

Assertions may help optimize the synchronization process
The implementation may ignore the assertions
User-provided assertions must be correct
Assertion code 0 (no assertions) is always valid.
Assertion code is a binary-or’ed integer

Full list of assertions available in MPI 2.1 standard pp. 343

Course GSTU2009 One-sided communication Slide 153

Pitfalls with one-sided communication

Exposed memory needs to reside in a common block in
Fortran
Order of RMA operations needs to be managed by the
user in passive mode
Memory exposed for passive target synchronization needs
to be allocated with MPI Alloc mem

Not portable in Fortran

Course GSTU2009 One-sided communication Slide 154

Summary

One-sided communication is the third major
communication paradigm available in MPI
All communication parameters are defined by the origin
process
RMA operations comprise Put, Accumulate and Get

Accumulate only works with predefined operators on
predefined datatypes

Synchronization is separated from the data movement
Three synchronization modes are available

Fence (collective on the window communicator)
GATS (pair-wise synchronization on subgroups)
Lock/Unlock (passive target synchronization)

Course GSTU2009 One-sided communication Slide 155

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Virtual Topologies

Course GSTU2009 Marc-André Hermanns

Learning Objectives

After this lesson, you will be able to
List available virtual topology types in MPI
Create multi-dimensional Cartesian communicators
Create sub-communicators of existing Cartesian
communicators
Use MPI to determine optimal Cartesian decomposition
Query neighbors on Cartesian communicators

Course GSTU2009 Virtual Topologies Slide 157

Motivation

Problem domain is often multi-dimensional
Optimal mapping to one dimension often complex and not
portable

Network topology may largely influences application
performance if not adhered properly

Neighbor determination may be cumbersome
Naming in multi-dimensional space is often more intuitive

Course GSTU2009 Virtual Topologies Slide 158

Virtual Topology Use Case

Array A (1 :3000, 1 :4000, 1 :500) = 6× 109 words
distributed on 3× 4× 5 = 60 processors
with coordinates (0..2, 0..3, 0..4)

Processor (2, 0, 3), i.e. rank 43
gets e.g. A (2001 :3000, 1 :1000, 301 :400) = 0.1× 109

words
Process coordinates: Handled by virtual Cartesian
topology
Array decomposition: Handled by the application, i.e. the
user

Course GSTU2009 Virtual Topologies Slide 159

Virtual topologies

Convenient process naming mechanism
Allow to name the processes in a communicator in a way
that fits the communication pattern better
Make subsequent code simpler
May provide hints to the run-time system that allow for
optimization of the communication
Creating a virtual topology produces a new communicator
MPI provides mapping functions

To compute ranks from virtual coordinates
And vice versa

Course GSTU2009 Virtual Topologies Slide 160

Example: 2-dimensional cylinder

0
(0,0)

1
(1,0)

2
(2,0)

3
(3,0)

4
(0,1)

5
(1,1)

6
(2,1)

7
(3,1)

8
(0,2)

9
(1,2)

10
(2,2)

11
(3,2)

Rank
Cartesian process coordinate

Cyclic boundary condition

Course GSTU2009 Virtual Topologies Slide 161

Topologies

Cartesian topology
Each process is connected to its neighbor process in a virtual
grid
Boundaries can be cyclic, or not (torus vs. grid)
Processes are identified by their Cartesian coordinates
Any process within the communicator can of course still
communicate with any other

Graph topologies (not covered in this course)

Generalized graphs
A process can have an arbitrary number of neighbors
Edges can be directed (asymmetric adjacency matrix)
Nodes can the same neighbor process multiple times

Course GSTU2009 Virtual Topologies Slide 162

Creating a Cartesian virtual topology
C/C++

int MPI_Cart_create(MPI_Comm comm_old, int ndims,

int *dims, int *periods, int reorder,

MPI_Comm *comm_cart)

Example

comm_old = MPI_COMM_WORLD
ndims = 2
dims = (4, 3)

periods = (1true, 0false)
reorder = see next slide

Course GSTU2009 Virtual Topologies Slide 163

Creating a Cartesian virtual topology
Fortran

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS,

REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

Example

comm_old = MPI_COMM_WORLD
ndims = 2
dims = (4, 3)

periods = (1true, 0false)
reorder = see next slide

Course GSTU2009 Virtual Topologies Slide 163

Example: 2-dimensional cylinder

If reorder == true, Process ranks in comm old and
comm cart may differ

0
(0,0)

1
(1,0)

2
(2,0)

3
(3,0)

4
(0,1)

5
(1,1)

6
(2,1)

7
(3,1)

8
(0,2)

9
(1,2)

10
(2,2)

11
(3,2)

11

10

9

8

7

6

5

4

3

2

1

0

Rank in comm cart

Rank in comm old

Course GSTU2009 Virtual Topologies Slide 164

Mapping functions
C/C++

Mapping ranks to process grid coordinates 6
(2,1)

int MPI_Cart_coords(MPI_Comm comm_cart, int rank, int maxdims,

int *coords)

Mapping process grid coordinates to ranks
6

(2,1)

int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

Course GSTU2009 Virtual Topologies Slide 165

Mapping functions
Fortran

Mapping ranks to process grid coordinates 6
(2,1)

MPI_CART_COORDS(COMM_CART, RANK, MAXDIMS, COORDS, IERROR)

INTEGER COMM_CART, RANK, MAXDIMS, COORDS(*), IERROR

Mapping process grid coordinates to ranks
6

(2,1)

MPI_CART_RANK(COMM_CART, COORDS, RANK, IERROR)

INTEGER COMM_CART, COORDS(*), RANK, IERROR

Course GSTU2009 Virtual Topologies Slide 165

Local process coordinates and rank

0
(0,0)

1
(1,0)

2
(2,0)

3
(3,0)

4
(0,1)

5
(1,1)

6
(2,1)

7
(3,1)

8
(0,2)

9
(1,2)

10
(2,2)

11
(3,2)

Each process obtains its own local values using
MPI Comm rank(comm cart, &myrank)
MPI Cart coords(comm cart, myrank,
maxdims, &mycoords)

Course GSTU2009 Virtual Topologies Slide 166

Computing the ranks of neighbor processes
C/C++

int MPI_Cart_shift(MPI_Comm comm_cart, int direction,

int disp, int *rank_source, int *rank_dest)

Returns MPI PROC NULL if there is no neighbor
MPI PROC NULL can be used as source or destination rank
in each communication

This communication will then be a no-op!

Course GSTU2009 Virtual Topologies Slide 167

Computing the ranks of neighbor processes
Fortran

MPI_CART_SHIFT(COMM_CART, DIRECTION, DISP, RANK_SOURCE,

RANK_DEST, IERROR)

INTEGER COMM_CART, DIRECTION, DISP, RANK_SOURCE,

RANK_DEST, IERROR

Returns MPI PROC NULL if there is no neighbor
MPI PROC NULL can be used as source or destination rank
in each communication

This communication will then be a no-op!

Course GSTU2009 Virtual Topologies Slide 167

Example: Computing a neighbor rank

0
(0,0)

1
(1,0)

2
(2,0)

3
(3,0)

4
(0,1)

5
(1,1)

6
(2,1)

7
(3,1)

8
(0,2)

9
(1,2)

10
(2,2)

11
(3,2)

MPI Cart shift(comm cart,dir,displacement,&source,&dest);

Example for myrank=6: 0 or +1 5 7
1 +1 2 10

Course GSTU2009 Virtual Topologies Slide 168

Cartesian partitioning
C/C++

int MPI_Cart_sub(MPI_Comm comm_cart, int *remain_dims,

MPI_Comm *comm_slice)

Cut a grid into sub-grids (“slices”)
A new communicator is created for each slice

Course GSTU2009 Virtual Topologies Slide 169

Cartesian partitioning
Fortran

MPI_CART_SUB(COMM_CART, REMAIN_DIMS, COMM_SLICE, IERROR)

INTEGER COMM_CART

LOGICAL REMAIN_DIMS(*)

INTEGER COMM_SLICE, IERROR

Cut a grid into sub-grids (“slices”)
A new communicator is created for each slice

Course GSTU2009 Virtual Topologies Slide 169

Example: Cartesian sub-communicators

Slice 0

Slice 1

Slice 2

0
(0,0)

1
(1,0)

2
(2,0)

3
(3,0)

4
(0,1)

5
(1,1)

6
(2,1)

7
(3,1)

8
(0,2)

9
(1,2)

10
(2,2)

11
(3,2)

0(0) 1(1) 2(2) 3(3)

0(0) 1(1) 2(2) 3(3)

0(0) 1(1) 2(2) 3(3)

Rank and Cartesian coordinate in comm slice

int remain dims[2] = {1,0};
MPI Cart sub(comm cart, remain dims, &comm slice);

Course GSTU2009 Virtual Topologies Slide 170

Summary

MPI provides virtual topologies to enable the user to
describe the application topology
MPI libraries may optimize process placement for the
virtual topology
Query functions ease handling of neighbor communication
Multi-dimensional Cartesian grids and generalized graphs
can be created
Cartesian topologies can be sliced into
sub-communicators

Course GSTU2009 Virtual Topologies Slide 171

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Basic parallel I/O

Course GSTU2009 Marc-André Hermanns

Learning Objectives

At the end of this lesson, you will be able to
Motivate the need for parallel I/O
Discuss the advantages of MPI file I/O
Explain the common terms of MPI I/O
Create, open and close files with parallel access
Read from and write to a file
Move the file pointer to an arbitrary position in the file

Course GSTU2009 Basic parallel I/O Slide 173

Motivation for parallel I/O

Current scientific applications work on larger datasets that
need to be read from and written to persistent storage.
With CPU and interconnect speed increasing faster than
persistent I/O speed, I/O might be the bottleneck of your
application in the future.
Workload is distributed to processes, while a lot of
applications still serialize the I/O
Process local files have serious scalability issues

Too many files
Manipulation of file system meta-data may be serialized

Efficient parallel I/O to a minimal set of files is needed

Course GSTU2009 Basic parallel I/O Slide 174

Amenities of MPI-I/O I

Portability
Standardized in 1997 and widespread support among
vendors.
Open Source implementation ROMIO is publicly available.

Ease of use
It blends into syntax and semantic scheme of point-to-point
and collective communication of MPI.
Writing to a file is like sending data to another process.

Efficiency
MPI implementers can transparently choose the best
performing implementation for a specific platform.

Course GSTU2009 Basic parallel I/O Slide 175

Amenities of MPI-I/O II
High level Interface

It provides coordinated and structured access to a file for
multiple processes.
Distributed I/O to the same file through collective operations.

Handling of heterogeneous environments
Automatic data conversion in heterogeneous systems.
File interoperability between systems via external
representation.

Course GSTU2009 Basic parallel I/O Slide 176

MPI-I/O requirements

Understanding of collective communication
A file handle works like a communicator for file I/O.
Coordination of file accesses can be of collective nature.

Handling of Immediate Operations
Non-blocking calls may overlap computation and I/O.

Derived Datatypes
Non-contiguous file access is defined with MPI’s derived
datatypes.

Course GSTU2009 Basic parallel I/O Slide 177

Terms and Definitions I

File
An MPI file is an ordered collection of typed data items.

Displacement

Displacement is an absolute byte position relative to the
beginning of a file.

Offset
Offset is a position in the file relative to the current view. It is
expressed as a count of elementary types.

Course GSTU2009 Basic parallel I/O Slide 178

Terms and Definitions II

Elementary type

The elementary type is the basic entity of a file. It must be the
same on all processes with the same file handle.

File type

The file type describes the access pattern of the processes
on the file. It defines what parts of the file are accessible by a
specific process. The processes may have different file types
to access different parts of a file.

Course GSTU2009 Basic parallel I/O Slide 179

Terms and Definitions III

File view
A view defines the file data visible to a process. Each
process has an individual view of a file defined by a
displacement, an elementary type and a file type. The pattern
is the same that MPI TYPE CONTIGUOUS would produced if it
were passed the file type.

File pointer

A file pointer is an explicit offset maintained by MPI.

Course GSTU2009 Basic parallel I/O Slide 180

Opening a file
C/C++

int MPI_File_open(MPI_Comm comm, char *filename,

int amode, MPI_Info info,

MPI_File *fh);

Filename’s namespace is implementation dependent
Call is collective on comm

Process-local files can be opened with MPI COMM SELF

Filename must reference the same file on all processes
Additional information can be passed to MPI environment
via the MPI Info handle.

Course GSTU2009 Basic parallel I/O Slide 181

Opening a file
Fortran

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTERGER COMM, AMODE, INFO, FH, IERROR

Filename’s namespace is implementation dependent
Call is collective on comm

Process-local files can be opened with MPI COMM SELF

Filename must reference the same file on all processes
Additional information can be passed to MPI environment
via the MPI Info handle.

Course GSTU2009 Basic parallel I/O Slide 181

Access modes

Access mode is a bit-vector, which is modified with
| (Bitwise OR) in C
IOR (IOR Operator) in FORTRAN 90
+ (Addition Operator) in FORTRAN 77

One and only one of the following modes is mandatory:
MPI MODE RDONLY – read only
MPI MODE RDWR – read and write access
MPI MODE WRONLY – write only

The following modes are optional:
MPI MODE CREATE – create file if it doesn’t exist
MPI MODE EXCL – error if creating file that already exists
MPI MODE DELETE ON CLOSE – delete file on close
MPI MODE UNIQUE OPEN – file can not be opened elsewhere
MPI MODE SEQUENTIAL – sequential file access (e.g tapes)
MPI MODE APPEND – all file pointers are set to end of file

Course GSTU2009 Basic parallel I/O Slide 182

Reserved info keys for MPI-I/O I

Argument of MPI_FILE_OPEN, MPI_FILE_DELETE,
MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO
Examples of reserved key values:

Collective buffering
collective_buffering (boolean): specifies whether the
application may benefit from collective buffering
cb_block_size (integer): data access in chunks of this size
cb_buffer_size (integer): on each node; usually a multiple of
block size
cb_nodes (integer): number of nodes used for collective buffering

Disk striping (only relevant in MPI_FILE_OPEN)
striping_factor (integer): number of I/O devices used for
striping
striping_unit (integer): amount of consecutive data assigned
to one I/O device before progressing to the next device

Course GSTU2009 Basic parallel I/O Slide 183

Reserved info keys for MPI-I/O II
MPI_INFO_NULL may be passed

Course GSTU2009 Basic parallel I/O Slide 184

Closing a file
C/C++

int MPI File close(MPI File *fh);

Collective operation
If MPI MODE DELETE ON CLOSE was specified on opening,
the file is deleted after closing

Course GSTU2009 Basic parallel I/O Slide 185

Closing a file
Fortran

MPI FILE CLOSE(FH, IERROR)

INTERGER FH, IERROR

Collective operation
If MPI MODE DELETE ON CLOSE was specified on opening,
the file is deleted after closing

Course GSTU2009 Basic parallel I/O Slide 185

Deleting a file
C/C++

int MPI_File_delete(char *filename, MPI_Info info)

May be used to delete a file that is not currently opened
Call is not collective, if called by multiple processes on the
same file, all but one will return an error code 6=
MPI_SUCCESS

A file is deleted automatically by MPI_FILE_CLOSE if
MPI_DELETE_ON_CLOSE was specified in amode parameter of
MPI_FILE_OPEN

Course GSTU2009 Basic parallel I/O Slide 186

Deleting a file
Fortran

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

May be used to delete a file that is not currently opened
Call is not collective, if called by multiple processes on the
same file, all but one will return an error code 6=
MPI_SUCCESS

A file is deleted automatically by MPI_FILE_CLOSE if
MPI_DELETE_ON_CLOSE was specified in amode parameter of
MPI_FILE_OPEN

Course GSTU2009 Basic parallel I/O Slide 186

Writing to a file
C/C++

int MPI_File_write(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

Writes COUNT elements of DATATYPE from memory starting
at BUF to the file
Starts writing at the current position of the file pointer
STATUS will indicate how many bytes have been written

Course GSTU2009 Basic parallel I/O Slide 187

Writing to a file
Fortran

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS,

IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE),

IERROR

Writes COUNT elements of DATATYPE from memory starting
at BUF to the file
Starts writing at the current position of the file pointer
STATUS will indicate how many bytes have been written

Course GSTU2009 Basic parallel I/O Slide 187

Reading from a file
C/C++

int MPI_File_read(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

Reads COUNT elements of DATATYPE from the file to
memory starting at BUF
Starts reading at the current position of the file pointer
STATUS will indicate how many bytes have been read

Course GSTU2009 Basic parallel I/O Slide 188

Reading from a file
Fortran

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS,

IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE),

IERROR

Reads COUNT elements of DATATYPE from the file to
memory starting at BUF
Starts reading at the current position of the file pointer
STATUS will indicate how many bytes have been read

Course GSTU2009 Basic parallel I/O Slide 188

Seeking to a file position
C/C++

int MPI_File_seek(MPI_File fh, MPI_Offset offset,

int whence)

Updates the individual file pointer according to WHENCE,
which can have the following values:

MPI_SEEK_SET: pointer is set to OFFSET
MPI_SEEK_CUR: pointer is set to the current position plus
OFFSET
MPI_SEEK_END: pointer is set to the end of file plus OFFSET

OFFSET can be negative, which allows seeking backwards
It is erroneous to seek to a negative position in the view

Course GSTU2009 Basic parallel I/O Slide 189

Seeking to a file position
Fortran

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Updates the individual file pointer according to WHENCE,
which can have the following values:

MPI_SEEK_SET: pointer is set to OFFSET
MPI_SEEK_CUR: pointer is set to the current position plus
OFFSET
MPI_SEEK_END: pointer is set to the end of file plus OFFSET

OFFSET can be negative, which allows seeking backwards
It is erroneous to seek to a negative position in the view

Course GSTU2009 Basic parallel I/O Slide 189

Querying the position of the file pointer
int MPI_File_get_position(MPI_File fh, MPI_Offset* offset)

Returns the current position of the individual file pointer in
OFFSET

The value can be used to return to this position or
calculate a displacement

Do not forget to convert from offset to byte displacement if
needed

Course GSTU2009 Basic parallel I/O Slide 190

Querying the position of the file pointer
MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND)

Returns the current position of the individual file pointer in
OFFSET

The value can be used to return to this position or
calculate a displacement

Do not forget to convert from offset to byte displacement if
needed

Course GSTU2009 Basic parallel I/O Slide 190

Error handling

Default error handler is MPI ERRORS RETURN

Return values can be evaluated by the user application

I/O errors are usually less catastrophic than
communication errors
Error handlers are set on a per-file-handle basis
Default error handler is set by using MPI FILE NULL as the
file handle

Course GSTU2009 Basic parallel I/O Slide 191

Summary

MPI offers an easy to use interface to parallel I/O
Opening and closing a file is collective
Interface blends into the general look-and-feel
MPI datatypes are used to read from and write to files
MPI I/O sets MPI ERRORS RETURN as default handler

Course GSTU2009 Basic parallel I/O Slide 192

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
File pointers and views

Course GSTU2009 Marc-André Hermanns

Learning Objectives

At the end of this lesson, you will be able to
Use individual and shared file pointers
Create a special view for a file handle
Use consecutive views for multipart files
Query the view set on a file handle

Course GSTU2009 File pointers and views Slide 194

File pointers

Individual file pointers
Each process has its own file pointer that is only altered on
accesses of that specific process

Shared file pointers
This file pointer is shared among all processes in the
communicator used to open the file
It is modified by any shared file pointer access of any process
Shared file pointers can only be used if file type gives each
process access to the whole file!

Explicit offset
No file pointer is used or modified
An explicit offset is given to determine access position
This can not be used with MPI MODE SEQUENTIAL!

Course GSTU2009 File pointers and views Slide 195

Writing to a file using the shared file pointer
C/C++

int MPI_File_write_shared(MPI_File fh, void* buf, int count,

MPI_Datatype datatype, MPI_Status* status)

Blocking, individual write using the shared file pointer
Only the shared file pointer will be advanced accordingly
DATATYPE is used as the access pattern to BUF

Middleware will serialize accesses to the shared file
pointer to ensure collision-free file access

Course GSTU2009 File pointers and views Slide 196

Writing to a file using the shared file pointer
Fortran

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

Blocking, individual write using the shared file pointer
Only the shared file pointer will be advanced accordingly
DATATYPE is used as the access pattern to BUF

Middleware will serialize accesses to the shared file
pointer to ensure collision-free file access

Course GSTU2009 File pointers and views Slide 196

Reading from a file using the shared file pointer
C/C++

int MPI_File_read_shared(MPI_File fh, void* buf, int count,

MPI_Datatype datatype, MPI_Status* status)

Blocking, individual read using the shared file pointer
Only the shared file pointer will be advanced accordingly
DATATYPE is used as the access pattern to BUF

Middleware will serialize accesses to the shared file
pointer to ensure collision-free file access

Course GSTU2009 File pointers and views Slide 197

Reading from a file using the shared file pointer
Fortran

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

Blocking, individual read using the shared file pointer
Only the shared file pointer will be advanced accordingly
DATATYPE is used as the access pattern to BUF

Middleware will serialize accesses to the shared file
pointer to ensure collision-free file access

Course GSTU2009 File pointers and views Slide 197

Seeking with the shared file pointer
C/C++

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset,

int whence)

Updates the individual file pointer according to WHENCE,
which can have the following values:

MPI_SEEK_SET: pointer is set to OFFSET
MPI_SEEK_CUR: pointer is set to the current position plus
OFFSET
MPI_SEEK_END: pointer is set to the end of file plus OFFSET

OFFSET can be negative, which allows seeking backwards
It is erroneous to seek to a negative position in the view
The call is collective

all processes with the file handle have to participate

Course GSTU2009 File pointers and views Slide 198

Seeking with the shared file pointer
Fortran

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Updates the individual file pointer according to WHENCE,
which can have the following values:

MPI_SEEK_SET: pointer is set to OFFSET
MPI_SEEK_CUR: pointer is set to the current position plus
OFFSET
MPI_SEEK_END: pointer is set to the end of file plus OFFSET

OFFSET can be negative, which allows seeking backwards
It is erroneous to seek to a negative position in the view
The call is collective

all processes with the file handle have to participate

Course GSTU2009 File pointers and views Slide 198

Querying the shared file pointer position
C/C++

int MPI_File_get_position_shared(MPI_File fh,

MPI_Offset* offset)

Returns the current position of the individual file pointer in
OFFSET

The value can be used to return to this position or
calculate a displacement

Do not forget to convert from offset to byte displacement if
needed

Call is not collective

Course GSTU2009 File pointers and views Slide 199

Querying the shared file pointer position
Fortran

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND)

Returns the current position of the individual file pointer in
OFFSET

The value can be used to return to this position or
calculate a displacement

Do not forget to convert from offset to byte displacement if
needed

Call is not collective

Course GSTU2009 File pointers and views Slide 199

Writing to an explicit offset in a file
C/C++

int MPI_Write_at(MPI_File fh, MPI_Offset offset,

void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

Writes COUNT elements of DATATYPE from memory BUF to
the file
Starts writing at OFFSET units of etype from begin of view
The sequence of basic datatypes of DATATYPE (= signature
of DATATYPE) must match contiguous copies of the etype of
the current view

Course GSTU2009 File pointers and views Slide 200

Writing to an explicit offset in a file
Fortran

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE,

STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE),

IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Writes COUNT elements of DATATYPE from memory BUF to
the file
Starts writing at OFFSET units of etype from begin of view
The sequence of basic datatypes of DATATYPE (= signature
of DATATYPE) must match contiguous copies of the etype of
the current view

Course GSTU2009 File pointers and views Slide 200

Reading at an explicit offset in a file
C/C++

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void* buf,

int count, MPI_Datatype datatype, MPI_Status* status)

Reads COUNT elements of DATATYPE from the file into
memory
DATATYPE defines where the data is placed in memory
EOF is reaches when elements read 6= COUNT

The sequence of basic datatypes of DATATYPE (= signature
of DATATYPE) must match contiguous copies of the etype of
the current view

Course GSTU2009 File pointers and views Slide 201

Reading at an explicit offset in a file
Fortran

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS,

IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Reads COUNT elements of DATATYPE from the file into
memory
DATATYPE defines where the data is placed in memory
EOF is reaches when elements read 6= COUNT

The sequence of basic datatypes of DATATYPE (= signature
of DATATYPE) must match contiguous copies of the etype of
the current view

Course GSTU2009 File pointers and views Slide 201

File views

Each process has a view connected to each handle
The view determines the process’ access to regions of a
file
A view is defined by a displacement, and elementary type
and a file type
The user can set a new elementary and file type via
MPI File set view

Elementary type can be any valid MPI datatype
File type must be a collection of the elementary typed
items

Course GSTU2009 File pointers and views Slide 202

Default view

A default view for each participating process is defined
implicitly while opening the file

No displacement
The file has no specific structure

The elementary type is MPI BYTE

All processes have access to the complete file
The file type is MPI BYTE

0 1 2 3 4 5 6 7 8 9 . . . file

0 1 2 3 4 5 6 7 8 9 . . . process 0

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 . . . process n-1

Course GSTU2009 File pointers and views Slide 203

Different views on a file

Processes:

Logical View:

Physical View:

Course GSTU2009 File pointers and views Slide 204

File layout

The filetype has to be constructed from one or multiple
elementary types

etype

filetype

holes

The layout then repeats the filetype like
MPI TYPE CONTIGUOUS would

. . .

accessible data
displacement

Course GSTU2009 File pointers and views Slide 205

Example of a file view

etype

filetype process 0

filetype process 1

filetype process 2

0 1 2 3 4 5 6 7 8 9 . . .

Course GSTU2009 File pointers and views Slide 206

Set file view
C/C++

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype,

char *datarep, MPI_Info info)

Changes the process’s view of the data
Local and shared file pointers are reset to zero
Collective operation
ETYPE and FILETYPE must be committed
DATAREP is a string specifying the data format

native, internal, external32, or user-defined

Course GSTU2009 File pointers and views Slide 207

Set file view
Fortran

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP,

INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

Changes the process’s view of the data
Local and shared file pointers are reset to zero
Collective operation
ETYPE and FILETYPE must be committed
DATAREP is a string specifying the data format

native, internal, external32, or user-defined

Course GSTU2009 File pointers and views Slide 207

Query the file view
C/C++

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp,

MPI_Datatype *etype, MPI_Datatype *filetype,

char *datarep)

Returns the process’s view of the data

Course GSTU2009 File pointers and views Slide 208

Query the file view
Fortran

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP,

IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

Returns the process’s view of the data

Course GSTU2009 File pointers and views Slide 208

Data Representations I

native
Data is stored in the file exactly as it is in memory
On homogeneous system no loss in precision or I/O
performance due to type conversions
On heterogeneous systems loss of transparent
interoperability
No guarantee that MPI files are accessible from C/Fortran

internal
Data is stored in implementation-specific format
Can be used in a homogeneous or heterogeneous
environment
Implementation will perform file conversions if necessary
No guarantee that MPI files are accessible from C/Fortran

Course GSTU2009 File pointers and views Slide 209

Data Representations II
external32

Standardized data representation (big-endian IEEE)
Read/write operations convert all data from/to this
representation
Files can be exported/imported to/from different MPI
environments
Precision and I/O performance may be lost due to type
conversions between
native and external32 representations
internal may be implemented as external32
Can be read/written also by non-MPI programs

User-defined
Allow the user to insert a third party converter into the I/O
stream to do the data representation conversion

Course GSTU2009 File pointers and views Slide 210

Parallel I/O to a single file

A global matrix of values can be stored in a single file
The file can be used on an arbitrary number of processes

File holds global data that is distributed to the processes via the
file view

Easier load distribution between several runs
Just reset the view

Using the same ordering in file and local memory
structures

Course GSTU2009 File pointers and views Slide 211

Example with sub-matrices

Filetype: SUBARRAY
Process topology: 2x3
Global array on file: 20x30
Local array on process: 10x10

C/C++

Fo
rt

ra
n

Course GSTU2009 File pointers and views Slide 212

Example with the distributed submatrices

Filetype: DARRAY
Process topology: 2x3
Cyclic distribution in first direction in strips of length 2
Block distribution in second direction

C/C++

Fo
rt

ra
n

Course GSTU2009 File pointers and views Slide 213

Conversion from offset to displacement
C/C++

int MPI_File_get_byte_offset(MPI_File fh,

MPI_Offset offset, MPI_Offset *disp)

Converts a view-relative offset into an absolute byte
position (e.g. for use as DISP parameter for a new view)

Course GSTU2009 File pointers and views Slide 214

Conversion from offset to displacement
Fortran

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Converts a view-relative offset into an absolute byte
position (e.g. for use as DISP parameter for a new view)

Course GSTU2009 File pointers and views Slide 214

Summary

MPI file handles support
individual file pointer access
shared file pointer access
file access with explicit offsets

MPI file views define the logical view on a file
The file appears to the process like a contiguous stream

File views determine where the data is located in the file
Datatype used in file access calls is only specifying the the
in-memory layout
Displacement in file view is used to skip header sections
File views are valid from the current displacement to the
end of the file

Course GSTU2009 File pointers and views Slide 215

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
Collective and non-blocking I/O

Course GSTU2009 Marc-André Hermanns

Learning Objectives

At the end of this lesson, you will be able to
Use collective calls to coordinate file access
Use non-blocking calls to overlap file access with
computation
Evaluate which type of call to use in a given scenario

Course GSTU2009 Collective and non-blocking I/O Slide 217

Benefits of coordinated Access

Explicit offsets / individual file pointers:
MPI implementation may internally communicate data to
avoid serialization of file access
MPI implementation may internally communicate data to
avoid redundant file access
Chance of best performance

Shared file pointer
Data accesses do not have to be serialized by the
MPI-implementation
First, locations for all accesses can be computed, then
accesses can proceed independently (possibly in parallel)
Also here: Chance of good performance

Course GSTU2009 Collective and non-blocking I/O Slide 218

Collective file access functions

Special suffix on function name
all with individual file pointer and explicit offset
ordered with shared file pointer

With shared file pointers data is written in the order of
process ranks

Deterministic outcome as opposed to individual writes with
the shared file pointer

All processes sharing the file handle have to participate

Course GSTU2009 Collective and non-blocking I/O Slide 219

Characteristics of non-blocking I/O

If supported by hardware, I/O can complete without
intervention of the CPU

Overlap of computation and I/O
I/O calls have two parts

Initialization
Completion

Implementations may perform all I/O in either part e.g.
when I/O progress is not supported by the operating
system

Course GSTU2009 Collective and non-blocking I/O Slide 220

Non-blocking file access functions

Individual function calls
Initialized by call to MPI File i[...]
Completed by call to MPI Wait or MPI Test

Collective function calls
Also called split-collective
Initialized by call to [...] begin
Completed by call to [...] end

STATUS parameter is replaced by REQUEST parameter
STATUS is parameter on completion call

File pointers are updated to the new position by the end of
the initialization call

Course GSTU2009 Collective and non-blocking I/O Slide 221

Non-blocking write with individual file pointer
C/C++

int MPI_File_iwrite(MPI_File fh, void* buf, int count,

MPI_Datatype datatype, MPI_Request* request)

Same semantics to buffer access as non-blocking
point-to-point communication
Completed by a call to MPI Wait or MPI Test

Other individual calls analogous

Non-standard interface, if ROMIO is used and not integrated

MPIO Request request
MPI FILE IREAD(fh, buf, count, datatype, request)
MPIO WAIT(request, status)
MPIO TEST(request, flag, status)

Course GSTU2009 Collective and non-blocking I/O Slide 222

Non-blocking write with individual file pointer
Fortran

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

Same semantics to buffer access as non-blocking
point-to-point communication
Completed by a call to MPI Wait or MPI Test

Other individual calls analogous

Non-standard interface, if ROMIO is used and not integrated

MPIO Request request
MPI FILE IREAD(fh, buf, count, datatype, request)
MPIO WAIT(request, status)
MPIO TEST(request, flag, status)

Course GSTU2009 Collective and non-blocking I/O Slide 222

Split collective file access
C/C++

int MPI_File_read_at_all_begin(MPI_File fh,

MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh,

void *buf, MPI_Status *status)

Collective operations may be split into two parts
Rules and restrictions:

Only one active (pending) split or regular collective operation
per file handle at any time
Split collective operations do not match the corresponding
regular collective operation
Same BUF argument in _begin and _end calls

Course GSTU2009 Collective and non-blocking I/O Slide 223

Split collective file access
Fortran

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT,

DATATYPE, IERROR)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE),

IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

Collective operations may be split into two parts
Rules and restrictions:

Only one active (pending) split or regular collective operation
per file handle at any time
Split collective operations do not match the corresponding
regular collective operation
Same BUF argument in _begin and _end calls

Course GSTU2009 Collective and non-blocking I/O Slide 223

Use cases I

Each process has to read in the complete file
Solution: MPI_FILE_READ_ALL

collective with individual file pointers, same view
(displacement, etype, filetype) on all processes
internally: read in once from disk by several processes
(striped), then distributed by broadcast

Course GSTU2009 Collective and non-blocking I/O Slide 224

Use cases II
The file contains a list of tasks, each task requires a different
amount of computing time

Solution: MPI_FILE_READ_SHARED
non-collective with a shared file pointer
same view on all processes (mandatory)

Course GSTU2009 Collective and non-blocking I/O Slide 225

Use cases III
The file contains a list of tasks, each task requires the same
amount of computing time

Solution: MPI_FILE_READ_ORDERED
collective with a shared file pointer
same view on all processes (mandatory)

or: MPI_FILE_READ_ALL
collective with individual file pointers
different views: filetype with
MPI TYPE CREATE SUBARRAY(...)

internally: both may be implemented in the same way, see
also the following use case

Course GSTU2009 Collective and non-blocking I/O Slide 226

Use cases IV
The file contains a matrix, distributed block partitioning, each
process reads a block

Solution: generate different filetypes with
MPI_TYPE_CREATE_DARRAY

the view of each process represents the block that is to be
read by this process
MPI_FILE_READ_AT_ALL with OFFSET=0
collective with explicit offsets
reads the whole matrix collectively
internally: contiguous blocks read in by several processes
(striped), then distributed with all-to-all

Course GSTU2009 Collective and non-blocking I/O Slide 227

Use cases V
Each process has to read the complete file

Solution: MPI_FILE_READ_ALL_BEGIN/END
collective with individual file pointers
same view (displacement, etype, filetype) on all processes
internally: asynchronous read by several processes (striped)
started, data distributed with bcast when striped reading has
finished

Course GSTU2009 Collective and non-blocking I/O Slide 228

Naming conventions in MPI I/O

Data access functions
MPI File write.../MPI File read...

Positioning
Explicit offset: ... at...
Individual Filepointer: no special qualifier.
Shared Filepointer: ... [shared|ordered]...

Synchronism
Blocking: no special qualifier
Non-Blocking: either MPI File i... (for individual access) or
... [begin|end] for split collective

Process coordination
Individual: no special qualifier
Collective: ... all...

Course GSTU2009 Collective and non-blocking I/O Slide 229

Other functions

Pre-allocating space for a file [may be expensive]
MPI FILE PREALLOCATE(fh, size)

Resizing a file [may speed up first write access to a file]
MPI FILE SET SIZE(fh, size)

Querying file size
MPI FILE GET SIZE(filename, size)

Querying file parameters
MPI FILE GET GROUP(fh, group)
MPI FILE GET AMODE(fh, amode)

File info object
MPI FILE SET INFO(fh, info)
MPI FILE GET INFO(fh, info used)

Course GSTU2009 Collective and non-blocking I/O Slide 230

Summary

Collective calls may help the MPI implementation to
optimize file access
Non-blocking calls may allow MPI implementation to
overlap file access with computation
File access can be categorized in positioning,
synchronization, and blocking semantics

Course GSTU2009 Collective and non-blocking I/O Slide 231

M
itg

lie
d

de
rH

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Parallel programming
MPI Summary

Course GSTU2009 Marc-André Hermanns

Summary

MPI is an interface for message passing applications
Data is explicitly transferred by sending and receiving

MPI is portable, efficient, and flexible
MPI provides three main communication paradigms

Point-to-point, collective and one-sided

MPI I/O provides access to portable and scalable I/O
MPI is the de-facto standard for parallelization in HPC
MPI is still developed further by the MPI Forum
Manufacturers of parallel computers and researchers from
universities, laboratories and industry are involved in its
development

Course GSTU2009 MPI Summary Slide 233

	Parallel architectures and programming models
	Workload distribution and domain decomposition
	Introduction to MPI
	Blocking point-to-point communication
	Non-blocking point-to-point communication
	Derived Datatypes
	Introduction
	Motivation
	Definition

	Derived datatypes
	Type maps
	Constructors

	Use of general datatypes
	Memory layout
	Committing and freeing
	Size and extent of datatypes

	Collective communication
	Introduction
	Barrier synchronization
	Broadcast, gather, scatter
	Global reduction operations

	One-sided communication
	Introduction
	Motivation
	Terms and definitions

	Communication
	Initialization
	Operations
	Synchronization

	Synchronization schemes
	Active target synchronization
	Passive target synchronization
	Assertions

	Conclusion

	Virtual Topologies
	Introduction
	Motivation
	Virtual Topologies

	Cartesian topologies
	Multidimensional Grids
	Cartesian communicators

	Basic parallel I/O
	Motivation
	Terms and definitions
	Basic file operations

	File pointers and views
	File pointers
	Overview
	The shared file pointer
	Explicit offsets

	File views
	Coordinated access

	Collective and non-blocking I/O
	Coordinated access
	Non-blocking access
	Use Cases

	MPI Summary

