MPI Topologies
Graph Topology

Kubra ADALI Emrah ERKAAN

As said before;

v The first part of MPI : Basic MPI

v The second part of MPI : Advanced MPI

Advanced MPI

e Contains;
> MPI Topologies

> Analysis of benefits

MPI Topologies

Introduction

v Provide avaliable naming need of a process in a group of
processes

v It is an attribute of processes only in the group

v Helps runtime systems in organizing processes onto
processors(hardware)

v The term “Virtual Topology” gives this main idea: machine
iIndependent

v Benefits of MPI topologies:
Applications have specific communication patterns
Topologies advice plans to the program when it's running

MPI Topologies

v There are two types of MPI topologies
» Cartesian Topology
> Graph Topology

Graph Topology

e \What we will see about!!!

a Introduction

0 Elements of Graph Topology

0 Important tips of Graph Topology
a Main MPI Graph Functions

0 Example

Graph Topology

e Introduction

a Firstly, graph topology, gives opportunity to make optional connections
between processes to programmers

a We use hierarchical systems which are given by graph topology for
solving weakness problem of MPI topology.

0 More generally, the process organizing is described by a graph

Graph Topology

e Elements of Graph Topology

e Communication link process

e Nodes in the graph \. .

e Neighbours of per node / \

e Type of mapping .‘) .

Graph Topology

e Elements of Graph Topology

a Nodes:Processors

o Lines: Communicators
between nodes

o Arrows:Show origins and
destinations of links

o Index: array of integers

describing node degrees

Process

N\

(Y X
o000
0000
o000
o0
O
Node | Nneighbors | index| edges
0]] 1
| 2 3 0,2
2 2 9 1,3
3] 6 2

Graph Topology

e Important tips of graph topology

v Graph topology can only be used in intra-communicators.
v Number of graph nodes must not be more than number of
processors.

v In a graph, communication speed may increase if process
addressing reordered by system.

v One node can be neighbour of another when opposite can not
be. This means asymmetric structure can be used.

v For only IBM, Graph topologies must be symmetric.If x is
neighbour of y ,then y is neighbour of x.

Graph Topology

e Main MPI Graph Functions

+ MPI_GRAPH CREATE :

v creates communicator with user-defined graph topology
v Usage:

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges, int reorder, MPI_Comm *comm_graph);

v Parameters

° comm_old
[in] input communicator without topology (handle)
° nnodes
[in] number of nodes in graph (integer)
° index
[in] array of integers describing node degrees
° edges
[in] array of integers describing graph edges
° reorder
[in] ranking may be reordered (true) or not (false) (logical)
° comm_graph
[out] communicator with graph topology added (handle)

Graph Topology

e Main MPI Graph Functions

. MPl_Graph_create Usage Example

X
- \
o

#include "mpi.h"
MPI_Comm graph_comm;

reorder,
e graph_comm);

int nnodes = 4; /* number of nodes */
int index[4] = {1, 3, 5, 6}; /* index definition */
int edges[6] = {1, 0, 2, 1, 3, 2}; /* edges definition */
int reorder = 1; /* allows processes reordered for efficiency */

MPI1_Graph_create(MPI_COMM_WORLD, nnodes, index, edges,

(XY
o000
000
eo0o
o0
O
Node | Nneighbors | index| edges
0] | 1
| 2 3 0,2
2 2 5 1,3
3] 6 2

Graph Topology

‘0

*,

Main MPI Graph Functions

MPI_GRAPH_NEIGHBORS_COUNT

Returns the number of neighbors of a node associated with a graph
topology

Usage:

int MPl_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors);

Parameters:
comm

[in] communicator with graph topology (handle)
rank

[in] rank of process in group of comm (integer)
nneighbors

[out] number of neighbors of specified process (integer)

Graph Topology

o
*

*

Main MPI Graph Functions
MP| GRAPH_NEIGHBORS

Returns the neighbors of a node associated with a graph topology

Usage:
int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors, int *neighbors);

Parameters

comm
[in] communicator with graph topology (handle)
rank
[in] rank of process in group of comm (integer)
maxneighbors
[in] size of array neighbors (integer)
neighbors
[out] ranks of processes that are neighbors to specified process (array of integer)

000
000
L X
Graph Topology :
e Main MPI Graph Functions
« MPI_Graph_neighbors count, MPl_Graph_neighbors
C: Node | Nneighbors | index| edges
]]]
int node, my_neighbors, my edges(2); V ‘
] 2 3 0,2
. 2 2 5 1,3
MPI_Comm_rank(graph_comm, &node); 3] 6 2

MPI1_Graph_neighbors_count(graph_comm, node, &my_neigh.t:xgps~);/I

MPI1_Graph_neighbors(graph_comm, node, Nneighbors, my edges);

Input node=2 Output my neighbors=2 my edges={1,3}

Graph Topology

e Main MPI Graph Functions

«+ MPI_GRAPH_GET:
v Retrieves graph topology information associated with a communicator

v Usage:

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index, int *edges);

v Parameters
e comm

[in] communicator with graph structure (handle)
e maxindex

[in] length of vector index in the calling program (integer)
e maxedges

[in] length of vector edges in the calling program (integer)
e ndex

[out] array of integers containing the graph structure

edges
[out] array of integers containing the graph structure

Graph Topology

e Main MPI Graph Functions

. MPI_GRAPHDIMS_GET :

v Retrieves graph topology information associated with a
communicator

v Usage:
int MPl_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges);
v Parameters
e comm
[in] communicator for group with graph structure (handle)
e nnodes
[out] number of nodes in graph (integer)
e nedges
[out] number of edges in graph (integer)

Graph Topology

e Main MPI| Graph Functions

o C:
int nnodes, nedges, index[4], edges|[0];

MPI_Graphdims_get(graph_comm, &nnodes, &nedges);
MPI_Graph_get(graph_comm, nnodes, nedges, index, edges);

Output [Node | Nneighbors| index] edges]
nnodes=4 0] | 1
nedges=6 1) 3 0.2
index={1,3,5,6}) i 5 13
edges={1,0,2,1,3,2} 3] 6)

Graph Topology

e Main MPI Graph Functions
+ MPl TOPO TEST :

v' Determines the type of topology (if any) associated with a
communicator

v Usage:
int MPI_Topo_test(MPI_Comm comm, int *fopo_type);
v Parameters

e comm
[in] communicator (handle)

e lop type
[out] topology type of communicator comm (integer).
If the communicator has no associated topology, returns MPI_UNDEFINED.

Graph Topology

Example:

#include "stdafx.h"
#include "mpi.h"

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
int errs = 0, i, k, neighbourNumber,j;
int wsize = 5;
int topo_type;
int *index, *edges, *outindex, *outedges,*neighbours;
MPI_Comm comm1, comm2;
MPI_Init(&argc, &argv); //preparation of environment of MPI

MPI_Comm_size(MPI_COMM_WORLD, &wsize); // Get the
number of Processors

Graph Topology

e Example:

if (wsize >= 3) {// If Processor number is more than 3 we can make a graph.
index = (int*)malloc(wsize * sizeof(int));
edges = (int*)malloc(wsize * 2 * sizeof(int));
// allocate memory for arrays

if (lindex || 'edges) {
printf("Unable to allocate %d words for index or edges\n”, 3 *
wsize); //Error Control if we cannot allocate memory

fflush(stdout);//buffer | bosaltir
MPI_Abort(MPI_COMM_WORLD, 1);

Graph Topology

e Example:

index[0] =2; // We are filling index values of the graph

index[1]=5;

index[2]=6;

index[3]=8;

index[4]=10;

edges[0]=1; // We are filling edge values of the graph

edges[1]=4; Node | Nneighbors | index| edges
edges[2]=0;

edges[3]=2; 0 2 2 1.4
edges[4]=3;] 3 51 0.2.3
edges[5]=1;)] 6 1
edges[6]=1;

edges|[7]=4; 3 2 8| 14
edges[8]=0; 4 2 101 0.3

edges[9]=3;

Graph Topology

- Example:

MPI_Graph_create(MPI_COMM_WORLD, wsize, index, edges, 0, &comm1);
//\We are creating our graph

[IMP1_COMM_WORLD is the communicators group we are going to use.

// wsize is the number of processors

// index and edges are the arrays that we are creating our graphs with.

// 0 used if we don’t want to order processes in the group.

//lcomm1 is the communicator which represents the graph.

MPI_Comm_dup(comm1, &comm?2);
/' We duplicated our graph.

MPI_Topo_test(comm2, &topo_type);
I/ Get the type of Toplogy we are using.

printf("The Topology Type of Graphs is %s" , &topo_type);

Graph Topology

e Example:

if (topo_type '= MPI_GRAPH) { // If Topology type is not graph stop process.
errs++;
printf("Topo type of duped graph was not graph\n");
fflush(stdout);
}
else {// If Topology type is graph continue our program
int nnodes, nedges;
MPI_Graphdims_get(comm2, &nnodes, &nedges);
/Il With using Graphdims we are getting dimensions of index array and edge array.
if (nnodes != wsize) {
// And we are controlling if Node number obtained from graphdims same with the number
/] of processors
errs++;
printf("Nnodes = %d, should be %d\n", nnodes, wsize);
fflush(stdout);
}
if (nedges != 2*wsize) {
errs++;
printf("Nedges = %d, should be %d\n", nedges, 2*wsize);
fflush(stdout);

}

Graph Topology

e Example:

//We are going to obtain arrays that we created graph with. We will use Graphget functions.
outindex = (int*)malloc(wsize * sizeof(int)); //allocate memory for arrays
outedges = (int*)malloc(wsize * 2 * sizeof(int); //allocate memory for arrays

MPI_Graph_get(comm2, wsize, 2*wsize, outindex, outedges);
Il Comm2 is the Communicator we will get arrays from.
/Il wsize and 2* wsize are the lenghts of arrays.
// outindex and outedges are the arrays to write graph information.
for (i=0; i<wsize; i++) {
/' We are controlling arrays we obtained with Graph_get if they are same with input
//arrays.
if (index[i] = outindex]i]) {
printf("%d = index[%d] != outindex[%d] = %d\n", index][i], i, i, outindex][i]);
fflush(stdout);
errs++;

}
}
for (i=0; i<2*wsize; i++) {
if (edges]i] != outedges]i]) {
printf("%d = edges[%d] != outedges[%d] = %d\n", edges]i], i, i, outedges]i]);
fflush(stdout);
errs++;

}
1

Graph Topology

e Example:

printf("\n The node count of graph that obtained with MP1_Graphdims_get Function
printf("%d", nnodes);

printf("\n Edge count of graph that obtained with MPI_Graphdims_get Function : ");
printf("%d", nedges);

printf("\n \n");

printf("Array of indexes that obtained with MPI_Graph_get Function : ");
/[We are printing arrays obtained with Graph_Get function.
for (i=0;i<wsize;i++)

{

}
printf("\nArray of Edges that obtained with MPI_Graph_get Function :");

for (i=0;i<wsize;i++)

{
}

printf("%d ,", outindex][i]);

printf("%d ,", outedges]i]);

free(outindex);//returns the memory which was allocated for outindex to system.
free(outedges); //returns the memory which was allocated for outedges to system.

printf("\n \n");

Graph Topology

e Example:

for(i=0;i<wsize;i++) // We are going to print each Nodes and their
// neighbours with using arrays that we obtained.

{
int temp;
if(i==0)
temp=0;
else
temp=index]i-1];

neighbourNumber=index[i]-temp; //Get each node’s neighbour

// number.
printf("\nMy node no is = %d and | have %d neighbours", i,neighbourNumber);
printf("\nMy neighbours are : ");
for(j=temp; j<index[i];j++)

{

printf("%s,",edges]j]);
}
printf("\n");

}

Graph Topology

e Example:

printf("With Using MPI Commands");
pnntf(L \nu);

for(k=0;k<wsize;k++)
{
MPI_Graph_neighbors_count(comm2,k,&neighbourNumber);
[lcomm2 is the communicator we get graph’s info.
Ik is the node number.
// neighbourNumber is number of neighbour of “k”;
MPI_Graph_neighbors(comm?2,k,neighbourNumber,&neighbours);
//k is the node number.
// neighbourNumber is number of neighbour of “k”.
// neighbour is the array neighbours of k will be write.
printf("My node no is = %d and | have %d neighbours\n", k,neighbourNumber);
printf("My neighbours are : ");
for(i=0;i<neighbourNumber;i++)

{
}

printf("%s,",neighboursJi]);

Graph Topology
e Example:

free(index); //return the allocated memory to the system.

free(edges); // return the allocated memory to the system.
MPI_Comm_free(&comm?2); // Empty comm2 and give to system.
MPI_Comm_free(&comm1); //Empty comm1 and give to system.

}

MPI_Finalize(); //Finish MPI
return O;

Graph Topology

e Example:

he Topology Type of Graphs

is MPI_GRAPH

he node count of graph that obhtained with MPI_Graphdims_get Function : 5
Edge count of graph that obhtained with MPI_Graphdims_get Function :10

Array of indexes that obtained with MPI_Graph_get Functio

Array of Edges that obtained with MPI_Graph_get Function

Lo ke e ke i\

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

node no is
neighbours

I have 2 neighbours

1.4.

I have
8.2.3.

I have

»

I have
1.4,

neighbours

neighbours

neighbours

neighbhours

neighbours

neighbhours

neighbours

neighbours

neighbours

18,
1.1.4.0.3.

n »5.6.8.

1,4.9.2.3

Bibliography

ehttp://www.netlib.org/utk/papers/mpi-book/node1.html

ehttp://mpi.deino.net/mpi functions/MP| Graph create.html

ehttp://www.mpi-forum.org/docs/mpi-11-html/node135.html

ehttp://parallel.ru/docs/Parallel/mpi1.1/node136.html 000
ehttp://ieeexplore.ieee.org/iel5/10618/33527/01592864.pdf 0000
00O
ohttp:llpublib.bouIder.ibm.com/infocenter/clresctr/vxrxlindex.jsp?topic=_I' 000
com.ibm.cluster.pe.doc/pe_43/am107a05163.html 000
. . . 000
ehttp://larshj.dk/morphy/javadoc/mpi/Graphcomm.html o0

ehttp://www.mhpcc.edul/training/workshop/mpi/MAIN.htmI#Virtual_Topologies

ehttp://www.hku.hk/cc/sp2/workshop/html/mpi/MPlintro.htmi#Virtual_Topologies

eohttp://www.it.neclab.eu/publications/paper/public/LR-04-201.pdf

